Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism

被引:1679
作者
Burke, Michaela S. [1 ]
Kast, Matthew G. [1 ,2 ]
Trotochaud, Lena [1 ]
Smith, Adam M. [1 ]
Boettcher, Shannon W. [1 ,2 ]
机构
[1] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[2] Univ Oregon, Ctr Sustainable Mat Chem, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
HYDROXIDE THIN-FILMS; WATER OXIDATION; ALPHA-COBALT; OXIDE CATALYSTS; REDOX; CO; NICKEL; NI; NANOSHEETS; ELECTROLYSIS;
D O I
10.1021/jacs.5b00281
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co1-xFex(OOH) is similar to 100-fold higher for x approximate to 0.6-0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co2+/3+ redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co1-xFex(OOH) is conductive under OER conditions (similar to 0.7-4 mS cm(-1) at similar to 300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 x 10(-2) mS cm(-1)) only at high overpotentials >400 mV. The apparent OER activity of FeOOH is thus limited by low conductivity. Microbalance measurements show that films with x >= 0.54 (i.e., Fe-rich) dissolve in 1 M KOH electrolyte under OER conditions. For x < 0.54, the films appear chemically stable, but the OER activity decreases by 16-62% over 2 h, likely due to conversion into denser, oxide-like phases. We thus hypothesize that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host. These results are important as Fe-containing Co- and Ni-(oxy)hydroxides are the fastest OER catalysts known.
引用
收藏
页码:3638 / 3648
页数:11
相关论文
共 90 条
[1]   HIGH-EFFICIENCY WATER ELECTROLYSIS IN ALKALINE-SOLUTION [J].
APPLEBY, AJ ;
CREPY, G ;
JACQUELIN, J .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1978, 3 (01) :21-37
[2]   Interfacial properties of oxides with technological impact in electrochemistry [J].
Ardizzone, S ;
Trasatti, S .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1996, 64 :173-251
[3]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[4]  
Ayers K., 2012, ECS T, V41, P15, DOI [10.1149/1.3684798, DOI 10.1149/1.3684798]
[5]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15
[6]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[7]  
Bard A.J., 2001, ELECTROCHEMICAL METH, P115
[8]   Proton-Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst [J].
Bediako, D. Kwabena ;
Costentin, Cyrille ;
Jones, Evan C. ;
Nocera, Daniel G. ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) :10492-10502
[9]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[10]   Electrodeposition of α- and β-cobalt hydroxide thin films via dilute nitrate solution reduction [J].
Brownson, Jeffrey R. S. ;
Levy-Clement, Claude .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (09) :1785-1791