A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation

被引:589
作者
Frame, S
Cohen, P [1 ]
Biondi, RM
机构
[1] Univ Dundee, Sch Life Sci, Div Signal Transduct Therapy, Dundee DD1 5EH, Scotland
[2] Univ Dundee, Sch Life Sci, MRC, Prot Phosphorylat Unit, Dundee DD1 5EH, Scotland
基金
英国医学研究理事会;
关键词
D O I
10.1016/S1097-2765(01)00253-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inhibition of GSK3 is required for the stimulation of glycogen and protein synthesis by insulin and the specification of cell fate during development. Here, we demonstrate that the insulin-induced inhibition of GSK3 and its unique substrate specificity are explained by the existence of a phosphate binding site in which Arg-96 is critical. Thus, mutation of Arg-96 abolishes the phosphorylation of "primed" glycogen synthase as well as inhibition by PKB-mediated phosphorylation of Ser-9. Hence, the phosphorylated N terminus acts as a pseudosubstrate, occupying the same phosphate binding site used by primed substrates. Significantly, this mutation does not affect phosphorylation of "nonprimed" substrates in the Wnt-signaling pathway (Axin and beta -catenin), suggesting new approaches to design more selective GSK3 inhibitors for the treatment of diabetes.
引用
收藏
页码:1321 / 1327
页数:7
相关论文
共 24 条
[1]   A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Cζ (PKCζ) and PKC-related kinase 2 by PDK1 [J].
Balendran, A ;
Biondi, RM ;
Cheung, PCF ;
Casamayor, A ;
Deak, M ;
Alessi, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20806-20813
[2]   Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA [J].
Biondi, RM ;
Cheung, PCF ;
Casamayor, A ;
Deak, M ;
Currie, RA ;
Alessi, DR .
EMBO JOURNAL, 2000, 19 (05) :979-988
[3]   Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription [J].
Coghlan, MP ;
Culbert, AA ;
Cross, DAE ;
Corcoran, SL ;
Yates, JW ;
Pearce, NJ ;
Rausch, OL ;
Murphy, GJ ;
Carter, PS ;
Cox, LR ;
Mills, D ;
Brown, MJ ;
Haigh, D ;
Ward, RW ;
Smith, DG ;
Murray, KJ ;
Reith, AD ;
Holder, JC .
CHEMISTRY & BIOLOGY, 2000, 7 (10) :793-803
[4]   The Tenth Datta Lecture - PDK1, one of the missing links in insulin signal transduction? [J].
Cohen, P ;
Alessi, DR ;
Cross, DAE .
FEBS LETTERS, 1997, 410 (01) :3-10
[5]   Crystal structure of glycogen synthase kinase 3β:: Structural basis for phosphate-primed substrate specificity and autoinhibition [J].
Dajani, R ;
Fraser, E ;
Roe, SM ;
Young, N ;
Good, V ;
Dale, TC ;
Pearl, LH .
CELL, 2001, 105 (06) :721-732
[6]  
Dale TC, 1998, BIOCHEM J, V329, P209
[7]   Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling [J].
Ding, VW ;
Chen, RH ;
McCormick, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32475-32481
[8]  
FIOL CJ, 1987, J BIOL CHEM, V262, P14042
[9]   A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1 [J].
Frödin, M ;
Jensen, CJ ;
Merienne, K ;
Gammeltoft, S .
EMBO JOURNAL, 2000, 19 (12) :2924-2934
[10]  
Hetman M, 2000, J NEUROSCI, V20, P2567