Particle filters for state and parameter estimation in batch processes

被引:141
作者
Chen, T [1 ]
Morris, J [1 ]
Martin, E [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Ctr Proc Analyt & Control Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
batch processes; parameter estimation; particle filters; sequential Monte Carlo; state estimation;
D O I
10.1016/j.jprocont.2005.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In process engineering, on-line state and parameter estimation is a key component in the modelling of batch processes. However, when state and/or measurement functions are highly non-linear and the posterior probability of the state is non-Gaussian, conventional filters. such as the extended Kalman filter, do not provide satisfactory results. This paper proposes an alternative approach whereby particle filters based on the sequential Monte Carlo method are used for the estimation task. Particle filters are initially described prior to discussing some implementation issues, including degeneracy, the selection of the importance density and the number of particles. A kernel smoothing approach is introduced for the robust estimation of unknown and time-varying model parameters. The effectiveness of particle filters is demonstrated through application to a benchmark batch polymerization process and the results are compared with the extended Kalman filter. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 673
页数:9
相关论文
共 21 条
[1]   DEVELOPMENT OF A GENERAL MATHEMATICAL FRAMEWORK FOR MODELING DIFFUSION-CONTROLLED FREE-RADICAL POLYMERIZATION REACTIONS [J].
ACHILIAS, DS ;
KIPARISSIDES, C .
MACROMOLECULES, 1992, 25 (14) :3739-3750
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   DIGITAL SYNTHESIS OF NON-LINEAR FILTERS [J].
BUCY, RS ;
SENNE, KD .
AUTOMATICA, 1971, 7 (03) :287-&
[4]  
CHEN T, 2004, P EUR S COMP AID PRO
[5]  
CHEN WS, 2004, P INT S ADV CONTR CH
[6]   Parameter estimation in general state-space models using particle methods [J].
Doucet, A ;
Tadic, VB .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) :409-422
[7]  
Doucet A., 1998, SEQUENTIAL MONTE CAR
[8]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[9]  
Jazwinski A.H., 2007, STOCHASTIC PROCESSES
[10]   Online optimizing control of molecular weight properties in batch free-radical polymerization reactors [J].
Kiparissides, C ;
Seferlis, P ;
Mourikas, G ;
Morris, AJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (24) :6120-6131