The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis

被引:202
作者
Choe, S
Dilkes, BP
Gregory, BD
Ross, AS
Yuan, H
Noguchi, T
Fujioka, S
Takatsuto, S
Tanaka, A
Yoshida, S
Tax, FE
Feldmann, KA [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
[2] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[3] Joetsu Univ Educ, Dept Chem, Joetsu, Niigata 9438512, Japan
[4] Japan Atom Energy Res Inst, Dept Environm & Resources, Takasaki, Gumma 3701292, Japan
关键词
D O I
10.1104/pp.119.3.897
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22 alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.
引用
收藏
页码:897 / 907
页数:11
相关论文
共 49 条
[1]   AC/DS TRANSPOSON MUTAGENESIS IN ARABIDOPSIS-THALIANA - MUTANT SPECTRUM AND FREQUENCY OF DS INSERTION MUTANTS [J].
ALTMANN, T ;
FELIX, G ;
JESSOP, A ;
KAUSCHMANN, A ;
UWER, U ;
PENACORTES, H ;
WILLMITZER, L .
MOLECULAR AND GENERAL GENETICS, 1995, 247 (05) :646-652
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation [J].
Azpiroz, R ;
Wu, YW ;
LoCascio, JC ;
Feldmann, KA .
PLANT CELL, 1998, 10 (02) :219-230
[4]   Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: Heterologous expression and complementation analysis of mutations for functional characterization [J].
Bach, TJ ;
Benveniste, P .
PROGRESS IN LIPID RESEARCH, 1997, 36 (2-3) :197-226
[5]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[6]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[7]  
BOWMAN JL, 1994, ARABIDOPSIS ATLAS MO, P3
[8]   The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis [J].
Choe, SW ;
Noguchi, T ;
Fujioka, S ;
Takatsuto, S ;
Tissier, CP ;
Gregory, BD ;
Ross, AS ;
Tanaka, A ;
Yoshida, S ;
Tax, FE ;
Feldmann, KA .
PLANT CELL, 1999, 11 (02) :207-221
[9]   The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis [J].
Choe, SW ;
Dilkes, BP ;
Fujioka, S ;
Takatsuto, S ;
Sakurai, A ;
Feldmann, KA .
PLANT CELL, 1998, 10 (02) :231-243
[10]  
Choe SW, 1998, TRANSGENIC PLANT RESEARCH, P57