The photochemical transformation of dissolved organic matter (DOM) in lakes and oceans has been shown to either reduce or enhance bacterial utilization. We compared the effects of UV radiation on the bacterial use of DOM in a wide range of lakes. Although complex DOM was converted in all irradiated samples into carboxylic acids that are readily utilized by bacteria, irradiation in several lakes resulted in a decreased ability of DOM to support bacterial growth. The effect of irradiation on the ability of DOM to promote bacterial growth was a positive function of the terrestrial humic matter, and a negative function of indigenous algal production. We suggest that the net effect of irradiation is a result of counteracting but concurrent processes rendering DOM either labile or recalcitrant. Humic DOM is predominantly transformed into forms of increased lability, whereas photochemical transformation into compounds of decreased bacterial substrate quality dominates in algal-derived DOM. Hence, solar-induced photochemical reactions interact with microbial degraders in different ways, depending on the origin and nature of the organic matter, affecting the transfer of energy within aquatic food webs, as well as the degradation and preservation of detrital organic matter, in different directions.