Linear gyrokinetic simulation of high-n toroidal Alfven eigenmodes in a burning plasma

被引:35
作者
Chen, Yang [1 ]
Parker, Scott E. [1 ]
Lang, J. [2 ]
Fu, G. -Y. [2 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
美国能源部;
关键词
WAVES; STABILITY; ELECTRONS; MODES; CODE;
D O I
10.1063/1.3490213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A hybrid gyrokinetic ions/massless fluid electron model is used to study the stability of high-n toroidal Alfven eigenmodes (TAEs) in ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)]. The hybrid model has been implemented in the particle-in-cell turbulence simulation code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)]. The adequacy of the hybrid model for simulating TAEs has been previously demonstrated [J. Lang et al., Phys. Plasmas 16, 102101 (2009)] by comparing the simulated TAE mode frequency and structure with an eigenmode analysis, and the thermal ion kinetic damping effect with analytic theory. By using a global particle-in-cell code the effects of large orbit width and nonlocal mode structures can be accurately included. Damping rate due to numerical filtering is carefully monitored, and convergence with respect to particle number, grid resolution, etc., is thoroughly tested. The simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particle nonperturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n = 15 mode is about beta(alpha)(0) = 0.7% for the fully shaped ITER equilibrium. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490213]
引用
收藏
页数:10
相关论文
共 30 条
[1]  
Birdsall C K., 2018, Plasma Physics via Computer Simulation
[2]   Modelling of Alfven waves in JET plasmas with the CASTOR-K code [J].
Borba, D ;
Berk, HL ;
Breizman, BN ;
Fasoli, A ;
Nabais, F ;
Pinches, SD ;
Sharapov, SE ;
Testa, D .
NUCLEAR FUSION, 2002, 42 (08) :1029-1038
[3]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[4]   A δf particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations [J].
Chen, Y ;
Parker, SE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (02) :463-475
[5]   A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations [J].
Chen, Y ;
Parker, S .
PHYSICS OF PLASMAS, 2001, 8 (02) :441-446
[6]   Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry [J].
Chen, Yang ;
Parker, Scott E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) :839-855
[7]   Particle-in-cell simulation with Vlasov ions and drift kinetic electrons [J].
Chen, Yang ;
Parker, Scott E. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[8]   LOW-N SHEAR ALFVEN SPECTRA IN AXISYMMETRICAL TOROIDAL PLASMAS [J].
CHENG, CZ ;
CHANCE, MS .
PHYSICS OF FLUIDS, 1986, 29 (11) :3695-3701
[9]   Kinetic electron closures for electromagnetic simulation of drift and shear-Alfven waves. I. [J].
Cohen, BI ;
Dimits, AM ;
Nevins, WM ;
Chen, Y ;
Parker, S .
PHYSICS OF PLASMAS, 2002, 9 (01) :251-262
[10]   IDEAL MAGNETO-HYDRODYNAMIC THEORY OF MAGNETIC FUSION SYSTEMS [J].
FREIDBERG, JP .
REVIEWS OF MODERN PHYSICS, 1982, 54 (03) :801-902