Phase transition in fluctuating branched geometry

被引:44
作者
Bialas, P
Burda, Z
机构
[1] UNIV BIELEFELD,FAK PHYS,D-33501 BIELEFELD,GERMANY
[2] JAGIELLONIAN UNIV,INST COMP SCI,PL-30072 KRAKOW,POLAND
[3] JAGIELLONIAN UNIV,INST PHYS,PL-30059 KRAKOW,POLAND
关键词
D O I
10.1016/0370-2693(96)00795-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study grand-canonical and canonical properties of the model of branched polymers proposed in [1]. We show that the model has a fourth order phase transition and calculate critical exponents. At the transition the exponent gamma of the grand-canonical ensemble, analogous to the string susceptibility exponent of surface models, gamma similar to 0.3237525... is the first known example of positive gamma which is not of the form 1/n, n = 2, 3,.... We show that a slight modification of the model produces a continuos spectrum of gamma's in the range (0, 1/2] and changes the order of the transition.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 8 条
[1]   SUMMING OVER ALL GENERA FOR D-GREATER-THAN-1 - A TOY MODEL [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
PHYSICS LETTERS B, 1990, 244 (3-4) :403-412
[2]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[3]   SCALING IN 4-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
NUCLEAR PHYSICS B, 1995, 451 (03) :643-676
[4]  
AMBJORN J, RG FLOW EXACTLY SOLV
[5]   Long range correlations in branched polymers [J].
Bialas, P .
PHYSICS LETTERS B, 1996, 373 (04) :289-295
[6]   CRITICAL EXPONENTS IN A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
DAVID, F ;
JURKIEWICZ, J ;
KRZYWICKI, A ;
PETERSSON, B .
NUCLEAR PHYSICS B, 1987, 290 (02) :218-230
[7]   2-POINT FUNCTIONS IN 4D DYNAMICAL TRIANGULATION [J].
DEBAKKER, BV ;
SMIT, J .
NUCLEAR PHYSICS B, 1995, 454 (1-2) :343-354
[8]   MULTI-SPIN SYSTEMS ON A RANDOMLY TRIANGULATED SURFACE [J].
DURHUUS, B .
NUCLEAR PHYSICS B, 1994, 426 (01) :203-222