Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages

被引:28
作者
Liu, SM
Cogny, A
Kockx, M
Dean, RT
Gaus, K
Jessup, W
Kritharides, L [1 ]
机构
[1] Inst Hearing Res, Sydney, NSW, Australia
[2] Univ New S Wales, Ctr Thrombosis & Vasc Res, Macrophage Blood Grp, Sydney, NSW, Australia
[3] Univ Canberra, Canberra, ACT, Australia
[4] Univ Sydney, Concord Hosp, Dept Cardiol, Sydney, NSW 2006, Australia
关键词
cholesterol efflux; high density lipoprotein; atherosclerosis; plasma membrane;
D O I
10.1194/jlr.M200464-JLR200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human monocyte-derived foam cell macrophages (HMFCs) are resistant to cholesterol efflux mediated by physiological acceptors. The role of the plasma membrane in regulating depletion of free cholesterol (FC) and of cholesteryl ester (CE) was investigated using cyclodextrins (CDs). HMFCs were incubated in media containing CDs (1.0 mg/ml, similar to0.7 mM) with low [hydroxypropyl-beta-CD (HP-CD)] or high [tri-methyl-beta-CD (TM-CD)] affinity for cholesterol in the presence or absence of phospholipid vesicles (PLVs). Low-affinity HF-CD+ caused minimal cholesterol efflux on its own, but HP-CD+ PLV depleted cell FC and CE to 54.5 +/- 6.7% of control by 24 h. TM-CD depleted FC at least as well as HP-CD+PLV but without depleting CE, even when combined with PLV. This was not explained by acceptor saturation, instability of PLV vesicles, de novo cholesterol synthesis, kinetically distinct cholesterol pools, or inhibition of CE hydrolysis. TM-CD did, however, deplete CE when lower concentrations of TM-CD were combined with PLV and when acetyl-CoA cholesteryl acyltransferase was inhibited. TM-CD caused much greater depletion of plasma membrane cholesterol than HP-CD without depleting plasma membrane sphingomyelin. It is concluded that differential depletion of plasma membrane cholesterol pools regulates cholesterol efflux and CE clearance in human macrophages.,
引用
收藏
页码:1156 / 1166
页数:11
相关论文
共 54 条
[1]   Identification of scavenger receptor SR-BI as a high density lipoprotein receptor [J].
Acton, S ;
Rigotti, A ;
Landschulz, KT ;
Xu, SZ ;
Hobbs, HH ;
Krieger, M .
SCIENCE, 1996, 271 (5248) :518-520
[2]   Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells [J].
Atger, VM ;
Moya, MD ;
Stoudt, GW ;
Rodrigueza, WV ;
Phillips, MC ;
Rothblat, GH .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (04) :773-780
[3]   ATHEROSCLEROSIS AND STEROL 27-HYDROXYLASE - EVIDENCE FOR A ROLE OF THIS ENZYME IN ELIMINATION OF CHOLESTEROL FROM HUMAN MACROPHAGES [J].
BJORKHEM, I ;
ANDERSSON, O ;
DICZFALUSY, U ;
SEVASTIK, B ;
XIU, RJ ;
DUAN, CG ;
LUND, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8592-8596
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]   The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J].
Bodzioch, M ;
Orsó, E ;
Klucken, T ;
Langmann, T ;
Böttcher, L ;
Diederich, W ;
Drobnik, W ;
Barlage, S ;
Büchler, C ;
Porsch-Özcürümez, M ;
Kaminski, WE ;
Hahmann, HW ;
Oette, K ;
Rothe, G ;
Aslanidis, C ;
Lackner, KJ ;
Schmitz, G .
NATURE GENETICS, 1999, 22 (04) :347-351
[6]   Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency [J].
Brooks-Wilson, A ;
Marcil, M ;
Clee, SM ;
Zhang, LH ;
Roomp, K ;
van Dam, M ;
Yu, L ;
Brewer, C ;
Collins, JA ;
Molhuizen, HOF ;
Loubser, O ;
Ouelette, BFF ;
Fichter, K ;
Ashbourne-Excoffon, KJD ;
Sensen, CW ;
Scherer, S ;
Mott, S ;
Denis, M ;
Martindale, D ;
Frohlich, J ;
Morgan, K ;
Koop, B ;
Pimstone, S ;
Kastelein, JJP ;
Genest, J ;
Hayden, MR .
NATURE GENETICS, 1999, 22 (04) :336-345
[7]  
BROWN MS, 1980, J BIOL CHEM, V255, P9344
[8]  
Christian AE, 1997, J LIPID RES, V38, P2264
[9]  
Christian AE, 1999, J LIPID RES, V40, P1475
[10]  
DEAN RT, 1979, EXP CELL BIOL, V47, P454