Computational identification of 69 retroposons in Arabidopsis

被引:49
作者
Zhang, YJ
Wu, YR
Liu, YL
Han, B [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Natl Ctr Gene Res, Shanghai 200233, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Plant Physiol & Ecol, Shanghai 200233, Peoples R China
关键词
D O I
10.1104/pp.105.060244
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Retroposition is a shot-gun strategy of the genome to achieve evolutionary diversities by mixing and matching coding sequences with novel regulatory elements. We have identified 69 retroposons in the Arabidopsis ( Arabidopsis thaliana) genome by a computational approach. Most of them were derivatives of mature mRNAs, and 20 genes contained relics of the reverse transcription process, such as truncations, deletions, and extra sequence additions. Of them, 22 are processed pseudogenes, and 52 genes are likely to be actively transcribed, especially in tissues from apical meristems ( roots and flowers). Functional compositions of these retroposon parental genes imply that not the mRNA itself but its expression in gamete cells defines a suitable template for retroposition. The presence/ absence patterns of retroposons can be used as cladistic markers for biogeographic research. Effects of human and the Mediterranean Pleistocene refugia in Arabidopsis biogeographic distributions were revealed based on two recent retroposons (At1g61410 and At5g52090). An evolutionary rate of new gene creation by retroposition was calculated as 0.6 genes per million years. Retroposons can also be used as molecular fossils of the parental gene expressions in ancient time. Extensions of 3' untranslated regions for those expressed parental genes are revealed as a possible trend of plant transcriptome evolution. In addition, we reported the first plant functional chimeric gene that adapts to intercompartmental transport by capturing two additional exons after retroposition.
引用
收藏
页码:935 / 948
页数:14
相关论文
共 49 条
[1]   POPULATION GENETIC-STRUCTURE AND OUTCROSSING RATE OF ARABIDOPSIS-THALIANA (L) HEYNH [J].
ABBOTT, RJ ;
GOMES, MF .
HEREDITY, 1989, 62 :411-418
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   EVOLUTIONARY TRANSFER OF THE CHLOROPLAST TUFA GENE TO THE NUCLEUS [J].
BALDAUF, SL ;
PALMER, JD .
NATURE, 1990, 344 (6263) :262-265
[4]   The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes [J].
Baumbusch, LO ;
Thorstensen, T ;
Krauss, V ;
Fischer, A ;
Naumann, K ;
Assalkhou, R ;
Schulz, I ;
Reuter, G ;
Aalen, RB .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4319-4333
[5]   A novel, non-redox-regulated NAD-dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L. [J].
Berkemeyer, M ;
Scheibe, R ;
Ocheretina, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (43) :27927-27933
[6]   Retroposed new genes out of the X in Drosophila [J].
Betrán, E ;
Thornton, K ;
Long, M .
GENOME RESEARCH, 2002, 12 (12) :1854-1859
[7]   Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1679-1691
[8]   Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1667-1678
[9]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[10]   RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements [J].
Brosius, J .
GENE, 1999, 238 (01) :115-134