Effects of hepatic zonal oxygen levels on hepatocyte stress responses

被引:21
作者
Broughan, Thomas A. [1 ]
Naukam, Rebecca [1 ]
Tan, Chibing [1 ]
De Wiele, C. Justin Van [1 ]
Refai, Hazem [3 ]
Teague, T. Kent [1 ,2 ,4 ]
机构
[1] Univ Oklahoma, Coll Med, Dept Surg, Tulsa, OK 74135 USA
[2] Oklahoma State Univ Hlth Sci, Dept Biochem & Microbiol, Tulsa, OK USA
[3] Univ Oklahoma, Dept Elect & Comp Engn, Tulsa, OK USA
[4] Univ Oklahoma, Coll Pharm, Dept Pharmaceut Sci, Tulsa, OK USA
关键词
liver; anoxia; hepatocyte; acute phase; ischemia;
D O I
10.1016/j.jss.2007.04.014
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background. Hepatocytes spend their lifetimes in a gradient of oxygen, hormones, and enzymes. We used a three-dimensional Matrigel model to determine whether hepatocytes cultured at perivenous (zone 3) oxygen levels differed in susceptibility to anoxia-induced cell injury compared with hepatocytes cultured at periportal (zone 1) oxygen levels. Materials and methods. Hepatocytes were harvested from Sprague Dawley rats and cultured at 9% oxygen (hepatic zone 1) or 5% oxygen (hepatic zone 3) and stressed at 0% oxygen. Microscopy, real-time reverse transcriptase-polymerase chain reaction, and enzyme-linked immunosorbent assay were used to assess cell viability, mitochondrial potential, acute phase responses, and membrane blebbing. Results. Hepatocytes cultured in Matrigel with HepatoZyme medium at zone 1 and zone 3 oxygen conditions were viable for 1 wk and showed acute phase responses as measured by interleukin-6-induced fibrinogen production. In response to 3 h anoxia, cells maintained at the perivenous oxygen level showed increased membrane blebbing and increased loss of mitochondrial membrane potential in comparison to the periportal oxygen cultured cells. Cells at perivenous oxygen also showed a reduced ability to recover following reoxygenation. Conclusions. Hepatocytes can remain viable and functional for extended periods in culture at low oxygen levels that mimic the hepatic perivenous environment, yet these cells are more susceptible to anoxia-induced damage than hepatocytes cultured at the periportal oxygen level. The small population of perivenous hepatocytes may be critical in determining the fate of the liver during ischemia/ reperfusion since hepatocytes cultured at that concentration appear to be more labile in response to anoxia. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:150 / 160
页数:11
相关论文
共 41 条
[1]  
BERNUAU D, 1983, HEPATOLOGY, V3, P29
[2]  
BIRGENS HS, 1978, ACTA MED SCAND, V204, P417
[3]   SUPPORT OF CULTURED-HEPATOCYTES BY A LAMININ-RICH GEL - EVIDENCE FOR A FUNCTIONALLY SIGNIFICANT SUBENDOTHELIAL MATRIX IN NORMAL RAT-LIVER [J].
BISSELL, DM ;
ARENSON, DM ;
MAHER, JJ ;
ROLL, FJ .
JOURNAL OF CLINICAL INVESTIGATION, 1987, 79 (03) :801-812
[4]   Early gene response to hepatic ischemia/reperfusion [J].
Broughan, TA ;
Jin, GF ;
Papaconstantinou, J .
JOURNAL OF SURGICAL RESEARCH, 1996, 63 (01) :98-104
[5]   EFFECTS OF EXTRACELLULAR-MATRIX ON HEPATOCYTE GROWTH AND GENE-EXPRESSION - IMPLICATIONS FOR HEPATIC REGENERATION AND THE REPAIR OF LIVER-INJURY [J].
BUCHER, NLR ;
ROBINSON, GS ;
FARMER, SR .
SEMINARS IN LIVER DISEASE, 1990, 10 (01) :11-19
[6]   Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent [J].
Camargo, CA ;
Madden, JF ;
Gao, WS ;
Selvan, RS ;
Clavien, PA .
HEPATOLOGY, 1997, 26 (06) :1513-1520
[7]   Alterations of cell volume regulation in the development of hepatocyte necrosis [J].
Carini, R ;
Autelli, R ;
Bellomo, G ;
Albano, E .
EXPERIMENTAL CELL RESEARCH, 1999, 248 (01) :280-293
[8]   Regulation of CCAAT/enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion [J].
Chandrasekar, B ;
Mitchell, DH ;
Colston, JT ;
Freeman, GL .
CIRCULATION, 1999, 99 (03) :427-433
[9]   Protection of the liver during hepatic surgery [J].
Clavien, PA ;
Emond, J ;
Vauthey, JN ;
Belghiti, J ;
Chari, RS ;
Strasberg, SM .
JOURNAL OF GASTROINTESTINAL SURGERY, 2004, 8 (03) :313-327
[10]  
DIJKSTRA CD, 1985, IMMUNOLOGY, V54, P589