Model study of coherent quantum dynamics of hole states in functionalized semiconductor nanostructures

被引:41
作者
Rego, LGC [1 ]
Abuabara, SG
Batista, VS
机构
[1] Univ Fed Santa Catarina, Dept Phys, BR-88040900 Florianopolis, SC, Brazil
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1873712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Functionalization of semiconductor nanocrystals can be achieved by anchoring organic ligands to the surface dangling bonds. The resulting surface complexes often introduce electronic states in the semiconductor band gap. These interband states sensitize the host material for photoabsorption at frequencies characteristic of the molecular adsorbates, leading to the well-known process of photoexcitation and subsequent femtosecond interfacial electron transfer. This paper investigates the relaxation dynamics of hole states, energetically localized deep in the semiconductor band gap, after the ultrafast electron-hole pair separation due to interfacial electron transfer. Mixed quantum-classical methods, based on mean-field nuclear dynamics approximated by ab initio density functional theory molecular dynamics simulations, reveal superexchange hole tunneling between adjacent adsorbate molecules in a model study of functionalized TiO2-anatase nanostructures. It is shown that electronic coherences can persist for hundreds of picoseconds under cryogenic and vacuum conditions, despite the partial. intrinsic decoherence induced by thermal ionic motion, providing results of broad theoretical and experimental interest. (c) 2005 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 53 条
[41]   A wave packet model for electron transfer and its implications for the semiconductor-liquid interface [J].
Smith, BB ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (45) :9915-9932
[42]   Study of electron transfer at semiconductor liquid interfaces addressing the full system electronic structure [J].
Smith, BB ;
Nozik, AJ .
CHEMICAL PHYSICS, 1996, 205 (1-2) :47-72
[43]   Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer [J].
Stier, W ;
Prezhdo, OV .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2003, 630 :33-43
[44]   Nonadiabatic molecular dynamics simulation of light-induced, electron transfer from an anchored molecular electron donor to a semiconductor acceptor [J].
Stier, W ;
Prezhdo, OV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (33) :8047-8054
[45]   Theoretical study of ultrafast heterogeneous electron transfer reactions at dye-semiconductor interfaces [J].
Thoss, M ;
Kondov, I ;
Wang, HB .
CHEMICAL PHYSICS, 2004, 304 (1-2) :169-181
[46]   Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations [J].
Vittadini, A ;
Selloni, A ;
Rotzinger, FP ;
Grätzel, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (06) :1300-1306
[47]   Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications [J].
Vydianathan, K ;
Nuesca, G ;
Peterson, G ;
Eisenbraun, ET ;
Kaloyeros, AE ;
Sullivan, JJ ;
Han, B .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (06) :1838-1849
[48]   Zinc oxide nanostructures: growth, properties and applications [J].
Wang, ZL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (25) :R829-R858
[49]   Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series [J].
Wheeler, DE ;
Rodriguez, JH ;
McCusker, JK .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (20) :4101-4112
[50]   Error avoiding quantum codes [J].
Zanardi, P ;
Rasetti, M .
MODERN PHYSICS LETTERS B, 1997, 11 (25) :1085-1093