Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies

被引:44
作者
Yoriya, Sorachon [2 ]
Grimes, Craig A. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
THICKNESS-LIMITED GROWTH; TITANIA NANOTUBES; OXIDE-FILMS; DIETHYLENE GLYCOL; ETHYLENE-GLYCOL; MU-M; FABRICATION; ANODIZATION; HYDROGEN;
D O I
10.1039/c0jm02421j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-assembled TiO2 nanotube arrays fabricated by electrochemical anodization of titanium are of great interest having been successfully used in many applications including gas sensing, water photoelectrolysis, drug delivery and photovoltaics. Nanotube array synthesis techniques have been studied and developed through several electrolyte systems, however, the key parameters controlling self-organization of the nanotubes have remained unclear. Herein we examine nanotube array morphological growth parameters as dependent upon electrolyte conductivity and titanium concentration. Electrolyte properties establish a regime wherein the TiO2 nanotube arrays self-assemble. Nanotube morphological parameters, including pore diameter, wall thickness and tube-to-tube spacing, are all found to increase with electrolyte conductivity. Using diethylene glycol (DEG) based electrolytes as a model, we detail how manipulation of electrolyte conductivity enables control of nanotube array morphological features.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 52 条
[1]   The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation [J].
Alivov, Yahya ;
Pandikunta, Mahesh ;
Nikishin, Sergey ;
Fan, Z. Y. .
NANOTECHNOLOGY, 2009, 20 (22)
[2]   Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes [J].
Berger, Steffen ;
Kunze, Julia ;
Schmuki, Patrik ;
Valota, Anna T. ;
LeClere, Darren J. ;
Skeldon, Peter ;
Thompson, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :C18-C23
[3]   Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting [J].
Chen, Qingwei ;
Xu, Dongsheng ;
Wu, Zhongyun ;
Liu, Zhongfan .
NANOTECHNOLOGY, 2008, 19 (36)
[4]  
Chipperfield J., 1999, Non-Aqueous Solvents
[5]   ANODIC OXIDE FILMS ON ALUMINUM [J].
DIGGLE, JW ;
DOWNIE, TC ;
GOULDING, CW .
CHEMICAL REVIEWS, 1969, 69 (03) :365-&
[6]  
Grimes CA, 2009, TIO2 NANOTUBE ARRAYS - SYNTHESIS, PROPERTIES, AND APPLICATIONS, pXIII
[7]   Nucleation-growth kinetics of the oxidation of silver nanocrystals to silver halide crystals [J].
Hasse, Ulrich ;
Fletcher, Stephen ;
Scholz, Fritz .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (10) :833-840
[8]  
Izutsu K., 2002, Electrochemistry in Nonaqueous Solutions
[9]  
First
[10]   Self-organized formation of hexagonal pore arrays in anodic alumina [J].
Jessensky, O ;
Muller, F ;
Gosele, U .
APPLIED PHYSICS LETTERS, 1998, 72 (10) :1173-1175