Axioms for the Shapley value on convex geometries

被引:34
作者
Bilbao, JM [1 ]
机构
[1] Escuela Superior Ingn, Matemat Aplicada 2, Sevilla 41092, Spain
关键词
shapley value; convex geometry;
D O I
10.1016/S0377-2217(97)00263-4
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The purpose of this article is an extension of Shapley's value for games with restricted cooperation. The classical model of cooperative game where every subset of players is a feasible coalition may be unrealistic. The feasible coalitions in our model will be the convex sets, i.e., those subsets of players belonging to a convex geometry L. In the last section, we apply this model to several examples about the power in the Council of Ministers of the European Union. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:368 / 376
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1993, SCAND POLIT STUD
[2]  
BIRKHOFF G, 1985, ORDER, V2, P223
[3]   ON THE POSITION VALUE FOR COMMUNICATION SITUATIONS [J].
BORM, P ;
OWEN, G ;
TIJS, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) :305-320
[4]  
Edelman P.H., 1985, GEOM DEDICATA, V19, P247, DOI [10.1007/BF00149365, DOI 10.1007/BF00149365]
[5]   THE SHAPLEY VALUE FOR COOPERATIVE GAMES UNDER PRECEDENCE CONSTRAINTS [J].
FAIGLE, U ;
KERN, W .
INTERNATIONAL JOURNAL OF GAME THEORY, 1992, 21 (03) :249-266
[6]  
Myerson R. B., 1977, Mathematics of Operations Research, V2, P225, DOI 10.1287/moor.2.3.225
[7]  
Shapley L.S., 1953, CONTRIBUTIONS THEORY, P307, DOI [10.1515/9781400881970-018/HTML, DOI 10.1515/9781400881970-018/HTML]
[8]  
Weber R. J., 1988, SHAPLEY VALUE ESSAYS, P101, DOI DOI 10.1017/CBO9780511528446.008