Regulation of cell adhesion by polysialic acid

被引:128
作者
Fujimoto, I [1 ]
Bruses, JL [1 ]
Rutishauser, U [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Cellular Biochem & Biophys Program, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M104525200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The polysialylation of neural cell adhesion molecule (NCAM) evolved in vertebrates to carry out biological functions related to changes in cell position and morphology. Many of these effects involve the attenuation of cell interactions that are not mediated through NCAM's own adhesion properties. A proposed mechanism for this global effect on cell interaction is the steric inhibition of membrane-membrane apposition based solely on polysialic acid (PSA) biophysical properties. However, it remains possible that the intrinsic binding or signaling properties of the NCAM polypeptide are also involved. To help resolve this issue, this study uses a quantitative cell detachment assay together with cells engineered to display different adhesion receptors together with a variety of polysialylated NCAM polypeptide isoforms and functional domain deletion mutations. The results obtained indicate that regulation by PSA occurs with adhesion receptors as diverse as an IgCAM, a cadherin and an integrin, and does not require NCAM functional domains other than those minimally required for polysialylation. These findings are most consistent with the cell apposition mechanism for PSA action, as this model predicts that the inhibitory effects of PSA-NCAM on cell adhesion should be independent of the nature of the adhesion system and of any intrinsic binding or signalling properties of the NCAM polypeptide itself.
引用
收藏
页码:31745 / 31751
页数:7
相关论文
共 36 条
[1]   NCAM POLYSIALIC ACID CAN REGULATE BOTH CELL CELL AND CELL SUBSTRATE INTERACTIONS [J].
ACHESON, A ;
SUNSHINE, JL ;
RUTISHAUSER, U .
JOURNAL OF CELL BIOLOGY, 1991, 114 (01) :143-153
[2]   NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn) [J].
Beggs, HE ;
Baragona, SC ;
Hemperly, JJ ;
Maness, PF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8310-8319
[3]   Lateral dimerization is required for the homophilic binding activity of C-cadherin [J].
Brieher, WM ;
Yap, AS ;
Gumbiner, BM .
JOURNAL OF CELL BIOLOGY, 1996, 135 (02) :487-496
[4]   IDENTIFICATION OF A HEPARIN BINDING DOMAIN OF THE NEURAL CELL-ADHESION MOLECULE N-CAM USING SYNTHETIC PEPTIDES [J].
COLE, GJ ;
AKESON, R .
NEURON, 1989, 2 (02) :1157-1165
[5]   INACTIVATION OF THE N-CAM GENE IN MICE RESULTS IN SIZE-REDUCTION OF THE OLFACTORY-BULB AND DEFICITS IN SPATIAL-LEARNING [J].
CREMER, H ;
LANGE, R ;
CHRISTOPH, A ;
PLOMANN, M ;
VOPPER, G ;
ROES, J ;
BROWN, R ;
BALDWIN, S ;
KRAEMER, P ;
SCHEFF, S ;
BARTHELS, D ;
RAJEWSKY, K ;
WILLE, W .
NATURE, 1994, 367 (6462) :455-459
[6]  
DEDHAR S, 1989, J BIOL CHEM, V264, P4832
[7]   ISOLATION OF A NOVEL INTEGRIN RECEPTOR MEDIATING ARG-GLY-ASP DIRECTED CELL-ADHESION TO FIBRONECTIN AND TYPE-I COLLAGEN FROM HUMAN NEUROBLASTOMA-CELLS - ASSOCIATION OF A NOVEL BETA-1-RELATED SUBUNIT WITH ALPHA-V [J].
DEDHAR, S ;
GRAY, V .
JOURNAL OF CELL BIOLOGY, 1990, 110 (06) :2185-2193
[8]   A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins [J].
Felding-Habermann, B ;
Silletti, S ;
Mei, F ;
Siu, CH ;
Yip, PM ;
Brooks, PC ;
Cheresh, DA ;
O'Toole, TE ;
Ginsberg, MH ;
Montgomery, AMP .
JOURNAL OF CELL BIOLOGY, 1997, 139 (06) :1567-1581
[10]   L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns [J].
Fransen, E ;
D'Hooge, R ;
Van Camp, G ;
Verhoye, M ;
Sijbers, J ;
Reyniers, E ;
Soriano, P ;
Kamiguchi, H ;
Willemsen, R ;
Koekkoek, SKE ;
De Zeeuw, CI ;
De Deyn, PP ;
Van der Linden, A ;
Lemmon, V ;
Kooy, RF ;
Willems, PJ .
HUMAN MOLECULAR GENETICS, 1998, 7 (06) :999-1009