Isoprene emission from plants: Why and how

被引:473
作者
Sharkey, Thomas D. [1 ]
Wiberley, Amy E. [1 ]
Donohue, Autumn R. [1 ]
机构
[1] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
atmospheric chemistry; isoprene; methylerythritol 4-phosphate pathway; thermotolerance;
D O I
10.1093/aob/mcm240
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. Scope The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. Conclusions The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 180 条
[1]   Protection by isoprene against singlet oxygen in leaves [J].
Affek, HP ;
Yakir, D .
PLANT PHYSIOLOGY, 2002, 129 (01) :269-277
[2]   Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow [J].
Affek, HP ;
Yakir, D .
PLANT PHYSIOLOGY, 2003, 131 (04) :1727-1736
[3]   LIGHT-STIMULATED CAROTENOID BIOSYNTHESIS DURING TRANSFORMATION OF MAIZE ETIOPLASTS IS REGULATED BY INCREASED ACTIVITY OF ISOPENTENYL PYROPHOSPHATE ISOMERASE [J].
ALBRECHT, M ;
SANDMANN, G .
PLANT PHYSIOLOGY, 1994, 105 (02) :529-534
[4]   CIRCADIAN CLOCK-REGULATED AND PHYTOCHROME-REGULATED TRANSCRIPTION IS CONFERRED BY A 78 BP CIS-ACTING DOMAIN OF THE ARABIDOPSIS CAB2 PROMOTER [J].
ANDERSON, SL ;
TEAKLE, GR ;
MARTINOCATT, SJ ;
KAY, SA .
PLANT JOURNAL, 1994, 6 (04) :457-470
[5]  
[Anonymous], 2000, INTRO ATMOSPHERIC CH, DOI [DOI 10.1515/9781400841547, 10.1029/01EO00292]
[6]   Transgenic, non-isoprene emitting poplars don't like it hot [J].
Behnke, Katja ;
Ehlting, Barbara ;
Teuber, Markus ;
Bauerfeind, Martina ;
Louis, Sandrine ;
Haensch, Robert ;
Polle, Andrea ;
Bohlmann, Joerg ;
Schnitzler, Joerg-Peter .
PLANT JOURNAL, 2007, 51 (03) :485-499
[7]   Plant terpenoid synthases: Molecular biology and phylogenetic analysis [J].
Bohlmann, J ;
Meyer-Gauen, G ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4126-4133
[8]   Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings [J].
Brilli, Federico ;
Barta, Csengele ;
Fortunati, Alessio ;
Lerdau, Manuel ;
Loreto, Francesco ;
Centritto, Mauro .
NEW PHYTOLOGIST, 2007, 175 (02) :244-254
[9]   Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves [J].
Brüggemann, N ;
Schnitzler, JP .
TREE PHYSIOLOGY, 2002, 22 (14) :1011-1018
[10]   Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) Saplings [J].
Brüggemann, N ;
Schnitzler, JP .
PLANT BIOLOGY, 2002, 4 (04) :456-463