Temporal and epigenetic regulation of neurodevelopmental plasticity

被引:22
作者
Allen, Nicholas D. [1 ]
机构
[1] Cardiff Univ, Sch Biosci, Cardiff CF10 3US, Wales
基金
英国医学研究理事会;
关键词
neural stem cell; progenitor; development; plasticity; differentiation; epigenetic;
D O I
10.1098/rstb.2006.2010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 169 条
[1]   Sonic hedgehog control of size and shape in midbrain pattern formation [J].
Agarwala, S ;
Sanders, TA ;
Ragsdale, CW .
SCIENCE, 2001, 291 (5511) :2147-2150
[2]   Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells [J].
Aiba, Kazuhiro ;
Sharov, Alexei A. ;
Carter, Mark G. ;
Foroni, Chiara ;
Vescovi, Angelo L. ;
Ko, Minoru S. H. .
STEM CELLS, 2006, 24 (04) :889-895
[3]   Upregulation of class II histone deacetylases mRNA during neural differentiation of cultured rat hippocampal progenitor cells [J].
Ajamian, F ;
Suuronen, T ;
Salminen, A ;
Reeben, M .
NEUROSCIENCE LETTERS, 2003, 346 (1-2) :57-60
[4]   Epigenetic aspects of differentiation [J].
Arney, KL ;
Fisher, AG .
JOURNAL OF CELL SCIENCE, 2004, 117 (19) :4355-4363
[5]   Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice [J].
Aubert, J ;
Stavridis, MP ;
Tweedie, S ;
O'Reilly, M ;
Vierlinger, K ;
Li, M ;
Ghazal, P ;
Pratt, T ;
Mason, JO ;
Roy, D ;
Smith, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 :11836-11841
[6]   Epidermal growth factor receptor and Ink4a/Arf:: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis [J].
Bachoo, RM ;
Maher, EA ;
Ligon, KL ;
Sharpless, NE ;
Chan, SS ;
You, MJJ ;
Tang, Y ;
DeFrances, J ;
Stover, E ;
Weissleder, R ;
Rowitch, DH ;
Louis, DN ;
DePinho, RA .
CANCER CELL, 2002, 1 (03) :269-277
[7]   REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis [J].
Ballas, N ;
Grunseich, C ;
Lu, DD ;
Speh, JC ;
Mandel, G .
CELL, 2005, 121 (04) :645-657
[8]   The many faces of REST oversee epigenetic programming of neuronal genes [J].
Ballas, N ;
Mandel, G .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (05) :500-506
[9]   Methyl-CpG-binding proteins - Targeting specific gene repression [J].
Ballestar, E ;
Wolffe, AP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (01) :1-6
[10]   Reversing histone methylation [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 2005, 436 (7054) :1103-1106