Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway

被引:89
作者
Aranda, A
del Olmo, ML
机构
[1] Univ Valencia, Fac Ciencias Biol, Dept Bioquim & Biol Mol, Valencia 46100, Spain
[2] CSIC, Dept Biotechnol, Inst Agroquim & Technol Alimentos, Valencia 46100, Spain
关键词
Saccharomyces cerevisiae; ethanol; acetaldehyde; flor yeasts; aldehyde dehydrogenases; stress response; Msn2p;
D O I
10.1002/yea.991
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the stress conditions that yeast may encounter is the presence of acetaldehyde. In a previous study we identified that, in response to this stress, several HSP genes are induced that are also involved in the response to other forms of stress. Aldehyde dehydrogenases (ALDH) play an important role in yeast acetaldehyde metabolism (e.g. when cells are growing in ethanol). In this work we analyse the expression of the genes encoding these enzymes (ALD) and also the corresponding enzymatic activities under several growth conditions. We investigate three kinds of yeast strains: laboratory strains, strains involved in the alcoholic fermentation stage of wine production and flor yeasts (responsible for the biological ageing of sherry wines). The latter are very important to consider because they grow in media containing high ethanol concentrations, and produce important amounts of acetaldehyde. Under several growth conditions, further addition of acetaldehyde or ethanol in flor yeasts induced the expression of some ALD genes and led to an increase in ALDH activity. This result is consistent with their need to obtain energy from ethanol during biological ageing processes. Our data also suggest that post-transcriptional and/or post-translational mechanisms are involved in regulating the activity of these enzymes. Finally, analyses indicate that the Msn2/4p and Hsf1p transcription factors are necessary for HSP26, ALD2/3 and ALD4 gene expression under acetaldehyde stress, while PKA represses the expression of these genes. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:747 / 759
页数:13
相关论文
共 39 条
[1]   Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J].
Alexandre, H ;
Ansanay-Galeote, V ;
Dequin, S ;
Blondin, B .
FEBS LETTERS, 2001, 498 (01) :98-103
[2]   Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner [J].
Amorós, M ;
Estruch, F .
MOLECULAR MICROBIOLOGY, 2001, 39 (06) :1523-1532
[3]   Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines [J].
Aranda, A ;
Querol, A ;
del Olmo, ML .
ARCHIVES OF MICROBIOLOGY, 2002, 177 (04) :304-312
[4]   DELETION ANALYSIS IDENTIFIES A REGION, UPSTREAM OF THE ADH2 GENE OF SACCHAROMYCES-CEREVISIAE, WHICH IS REQUIRED FOR ADR1-MEDIATED DEREPRESSION [J].
BEIER, DR ;
SLEDZIEWSKI, A ;
YOUNG, ET .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (07) :1743-1749
[5]   A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae [J].
Boubekeur, S ;
Bunoust, O ;
Camougrand, N ;
Castroviejo, M ;
Rigoulet, M ;
Guérin, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :21044-21048
[6]   Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae [J].
Boubekeur, S ;
Camougrand, N ;
Bunoust, O ;
Rigoulet, M ;
Guérin, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (19) :5057-5065
[7]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   CHROMATIN STRUCTURES AND TRANSCRIPTION OF RDNA IN YEAST SACCHAROMYCES-CEREVISIAE [J].
DAMMANN, R ;
LUCCHINI, R ;
KOLLER, T ;
SOGO, JM .
NUCLEIC ACIDS RESEARCH, 1993, 21 (10) :2331-2338
[10]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686