A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems

被引:143
作者
Croxton, KL [1 ]
Gendron, B
Magnanti, TL
机构
[1] Ohio State Univ, Fisher Coll Business, Columbus, OH 43210 USA
[2] Univ Montreal, Ctr Res Transports, Montreal, PQ H3C 3J7, Canada
[3] MIT, Sch Engn, Cambridge, MA 02139 USA
[4] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
关键词
piecewise linear; integer programming; linear relaxation; Lagrangian relaxation;
D O I
10.1287/mnsc.49.9.1268.16570
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a generic, minimization problem with separable nonconvex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
引用
收藏
页码:1268 / 1273
页数:6
相关论文
共 22 条
[1]   MODELING PIECEWISE-LINEAR CONCAVE COSTS IN A TREE PARTITIONING PROBLEM [J].
AGHEZZAF, EH ;
WOLSEY, LA .
DISCRETE APPLIED MATHEMATICS, 1994, 50 (02) :101-109
[2]   A COMPOSITE ALGORITHM FOR A CONCAVE-COST NETWORK FLOW PROBLEM [J].
BALAKRISHNAN, A ;
GRAVES, SC .
NETWORKS, 1989, 19 (02) :175-202
[3]  
Bienstock D., 1996, INFORMS Journal on Computing, V8, P243, DOI 10.1287/ijoc.8.3.243
[4]  
CHAN L, 1997, SUPPLY CHAIN MANAGEM
[5]  
COMINETTI R, 1997, BRANCH BOUND METHOD
[6]  
Croxton, 1999, THESIS MIT CAMBRIDGE
[7]   Models and methods for merge-in-transit operations [J].
Croxton, KL ;
Gendron, B ;
Magnanti, TL .
TRANSPORTATION SCIENCE, 2003, 37 (01) :1-22
[8]  
CROXTON KL, 2002, VARIABLE DISAGGREGAT
[9]  
CROXTON KL, 2002, COMP MIXED INTEGER P
[10]  
Dantzig G. B., 1963, LINEAR PROGRAMMING E