An integrated nanoliter DNA analysis device

被引:1108
作者
Burns, MA [1 ]
Johnson, BN
Brahmasandra, SN
Handique, K
Webster, JR
Krishnan, M
Sammarco, TS
Man, PM
Jones, D
Heldsinger, D
Mastrangelo, CH
Burke, DT
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn & Chem Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
关键词
D O I
10.1126/science.282.5388.484
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A device was developed that uses microfabricated fluidic channels, heaters, temperature sensors, and fluorescence detectors to analyze nanoliter-size DNA samples. The device is capable of measuring aqueous reagent and DNA-containing solutions, mixing the solutions together, amplifying or digesting the DNA to form discrete products, and separating and defecting those products. No external Lenses, heaters, or mechanical pumps are necessary for complete sample processing and analysis. Because all of the components are made using conventional photolithographic production techniques, they operate as a single closed system. The components have the potential for assembly into complex, low-power, integrated analysis systems at Low unit cost, The availability of portable, reliable instruments may facilitate the use of DNA analysis in applications such as rapid medical diagnostics and point-of-use agricultural testing.
引用
收藏
页码:484 / 487
页数:4
相关论文
共 27 条
[1]   Analysis of biosensor chips for identification of nucleic acids [J].
Arlinghaus, HF ;
Kwoka, MN ;
Jacobson, KB .
ANALYTICAL CHEMISTRY, 1997, 69 (18) :3747-3753
[2]   Fluorescence-based sequencing directly from bacterial and P1-derived artificial chromosomes [J].
Boysen, C ;
Simon, MI ;
Hood, L .
BIOTECHNIQUES, 1997, 23 (06) :978-&
[3]   Microfabrication technologies for integrated nucleic acid analysis [J].
Burke, DT ;
Burns, MA ;
Mastrangelo, C .
GENOME RESEARCH, 1997, 7 (03) :189-197
[4]   Microfabricated structures for integrated DNA analysis [J].
Burns, MA ;
Mastrangelo, CH ;
Sammarco, TS ;
Man, FP ;
Webster, JR ;
Johnson, BN ;
Foerster, B ;
Jones, D ;
Fields, Y ;
Kaiser, AR ;
Burke, DT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5556-5561
[5]   Accessing genetic information with high-density DNA arrays [J].
Chee, M ;
Yang, R ;
Hubbell, E ;
Berno, A ;
Huang, XC ;
Stern, D ;
Winkler, J ;
Lockhart, DJ ;
Morris, MS ;
Fodor, SPA .
SCIENCE, 1996, 274 (5287) :610-614
[6]   HIGH-SPEED SEPARATION OF ANTISENSE OLIGONUCLEOTIDES ON A MICROMACHINED CAPILLARY ELECTROPHORESIS DEVICE [J].
EFFENHAUSER, CS ;
PAULUS, A ;
MANZ, A ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1994, 66 (18) :2949-2953
[7]   Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J].
Effenhauser, CS ;
Bruin, GJM ;
Paulus, A ;
Ehrat, M .
ANALYTICAL CHEMISTRY, 1997, 69 (17) :3451-3457
[8]   PRESSING AHEAD WITH HUMAN GENOME SEQUENCING [J].
GIBBS, RA .
NATURE GENETICS, 1995, 11 (02) :121-125
[9]   Microchip device for performing enzyme assays [J].
Hadd, AG ;
Raymond, DE ;
Halliwell, JW ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 1997, 69 (17) :3407-3412
[10]   Microfluidic flow control using selective hydrophobic patterning [J].
Handique, K ;
Gogoi, BP ;
Burke, DT ;
Mastrangelo, CH ;
Burns, MA .
MICROMACHINED DEVICES AND COMPONENTS III, 1997, 3224 :185-195