The structure of the multidrug resistance protein 1 (MRP1/ABCC1) - Crystallization and single-particle analysis

被引:128
作者
Rosenberg, MF [1 ]
Mao, QC
Holzenburg, A
Ford, RC
Deeley, RG
Cole, SPC
机构
[1] Univ Manchester, Inst Sci & Technol, Dept Biomol Sci, Manchester M60 1QD, Lancs, England
[2] Queens Univ, Canc Res Labs, Kingston, ON K7L 3N6, Canada
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[4] Texas A&M Univ, Ctr Electron Microscopy, College Stn, TX 77843 USA
关键词
D O I
10.1074/jbc.M100176200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions, Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH2 terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are similar to 80 x 100 Angstrom. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to similar to 22-Angstrom resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.
引用
收藏
页码:16076 / 16082
页数:7
相关论文
共 52 条
  • [1] Biochemical, cellular, and pharmacological aspects of the multidrug transporter
    Ambudkar, SV
    Dey, S
    Hrycyna, CA
    Ramachandra, M
    Pastan, I
    Gottesman, MM
    [J]. ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 : 361 - 398
  • [2] [Anonymous], 1996, 3 DIMENSIONAL ELECT
  • [3] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [4] Membrane topology and glycosylation of the human multidrug resistance-associated protein
    Bakos, E
    Hegedus, T
    Hollo, Z
    Welker, E
    Tusnady, GE
    Zaman, GJR
    Flens, MJ
    Varadi, A
    Sarkadi, B
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) : 12322 - 12326
  • [5] Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain
    Bakos, E
    Evers, R
    Szakács, G
    Tusnády, GE
    Welker, E
    Szabó, K
    de Haas, M
    van Deemter, L
    Borst, P
    Váradi, A
    Sarkadi, B
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) : 32167 - 32175
  • [6] The multidrug resistance protein family
    Borst, P
    Evers, R
    Kool, M
    Wijnholds, J
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02): : 347 - 357
  • [7] The ABCs of ATP-sensitive potassium channels: more pieces of the puzzle
    Bryan, J
    AguilarBryan, L
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (04) : 553 - 559
  • [8] Chan HSL, 1997, CANCER RES, V57, P2325
  • [9] COLE SPC, 1994, CANCER RES, V54, P5902
  • [10] OVEREXPRESSION OF A TRANSPORTER GENE IN A MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINE
    COLE, SPC
    BHARDWAJ, G
    GERLACH, JH
    MACKIE, JE
    GRANT, CE
    ALMQUIST, KC
    STEWART, AJ
    KURZ, EU
    DUNCAN, AMV
    DEELEY, RG
    [J]. SCIENCE, 1992, 258 (5088) : 1650 - 1654