Relaxation of polymers in 2 nm slit-pores: confinement induced segmental dynamics and suppression of the glass transition

被引:54
作者
Manias, E
Kuppa, V
Yang, DK
Zax, DB
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY USA
关键词
dynamics; glass transition; calorimetry;
D O I
10.1016/S0927-7757(01)00634-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular Dynamics (MD) simulations are used to explore the structure and dynamics of polystyrene confined in 2 nm slit pores, between parallel, crystalline, mica-type surfaces. The systems simulated resemble experimentally studied intercalated nanocomposites, where polystyrene is inserted between layered-silicate layers. The molecular modeling perspective complements the experimental findings and provides insight into the nature of polymers in nanoscopic confinements, especially into the molecular origins of their macroscopic behavior. Namely, a comparison between simulation and NMR studies shows a coexistence of extremely faster and much slower segmental motions than the ones found in the corresponding bulk polymer at the same temperature. The origins of these dynamical inhomogeneities are traced to the confinement induced density modulations inside the 2 nm slits. Fast relaxing phenyl and backbone moieties are found in low density regions across the film, and preferentially in the center, whereas slow relaxing moieties are concentrated in denser regions in the immediate vicinity of the confining surfaces. At the same time, the temperature dependence of the segmental relaxations suggests that the glass transition is suppressed inside the confined films, an observation confirmed by scanning calorimetry. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:509 / 521
页数:13
相关论文
共 39 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   Nanoscopic-confinement effects on local dynamics [J].
Anastasiadis, SH ;
Karatasos, K ;
Vlachos, G ;
Manias, E ;
Giannelis, EP .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :915-918
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   THE ORIGIN OF GLASSY DYNAMICS AT SOLID OLIGOMER INTERFACES [J].
BITSANIS, IA ;
PAN, CM .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (07) :5520-5527
[5]   THE DRAINAGE OF THIN LIQUID-FILMS BETWEEN SOLID-SURFACES [J].
CHAN, DYC ;
HORN, RG .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (10) :5311-5324
[6]  
CHAN Y, 1997, THESIS CORNELL U
[7]   EXPERIMENTAL MEASUREMENTS OF SOLVATION FORCES IN NON-POLAR LIQUIDS [J].
CHRISTENSON, HK .
JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (11) :6906-6913
[8]   Interface and surface effects on the glass transition in thin polystyrene films [J].
DeMaggio, GB ;
Frieze, WE ;
Gidley, DW ;
Zhu, M ;
Hristov, HA ;
Yee, AF .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1524-1527
[9]   Interface and chain confinement effects on the glass transition temperature of thin polymer films [J].
Forrest, JA ;
DalnokiVeress, K ;
Dutcher, JR .
PHYSICAL REVIEW E, 1997, 56 (05) :5705-5716
[10]  
Forrest JA, 2000, POLYMER SURFACES, INTERFACES AND THIN FILMS, P251