Amino acids and nitrate as signals for the regulation of nitrogen acquisition

被引:167
作者
Miller, Anthony J. [1 ]
Fan, Xiaorong [1 ,2 ]
Shen, Qirong [2 ]
Smith, Susan J. [1 ]
机构
[1] Rothamsted Res, Crop Performance & Improvement Div, Harpenden AL5 2JQ, Herts, England
[2] Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
amino acids; ammonium uptake; feedback regulation; nitrate uptake; nitrogen sensor;
D O I
10.1093/jxb/erm208
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The uptake of nitrogen (N) by roots is known to change with supply in a manner that suggests that the N status of plants is somehow sensed and can feedback to regulate this process. The most abundant source of N in soils for crops is nitrate. Uptake systems for nitrate, ammonium, and amino acids are present in the roots of most plants including crops. As nitrate is assimilated via conversion to nitrite, then ammonium into amino acids, it has been suggested that the internal pools of amino acids within plants may indicate nitrogen status by providing a signal that can regulate nitrate uptake by the plant. In support of this idea, both nitrate and ammonium influx and transporter transcript were shown to decrease in root tissue treated with exogenously applied amino acids. Several different amino acids have been tested for their effects on influx and transcription and glutamine was most effective. The feedback regulation occurs by changing the expression of transporters, but may also involve the post-translational modification of proteins. For example, some of the cytoplasmic enzymes responsible for nitrate assimilation are regulated by phosphorylation and binding of a 14-3-3 protein. The effects of treating plants with glutamine have been examined, first to identify the uptake of the amino acid and then to measure tissue nitrate reductase activity and cellular pools of nitrate. These results are reviewed in terms of feedback regulation and the putative cell sensing systems for N status including a possible specific role for cytosolic nitrate.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 91 条
[1]  
Aber JD, 2003, BIOSCIENCE, V53, P375, DOI 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO
[2]  
2
[3]   A role for shoot protein in shoot-root dry matter allocation in higher plants [J].
Andrews, M ;
Raven, JA ;
Lea, PJ ;
Sprent, JI .
ANNALS OF BOTANY, 2006, 97 (01) :3-10
[4]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+
[5]   Putative role of γ-aminobutyric acid (GABA) as a longdistance signal in up-regulation of nitrate uptake in Brassica napus L. [J].
Beuve, N ;
Rispail, N ;
Laine, P ;
Cliquet, JB ;
Ourry, A ;
Le Deunff, E .
PLANT CELL AND ENVIRONMENT, 2004, 27 (08) :1035-1046
[6]   Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity [J].
Bi, YM ;
Zhang, Y ;
Signorelli, T ;
Zhao, R ;
Zhu, T ;
Rothstein, S .
PLANT JOURNAL, 2005, 44 (04) :680-692
[7]   Arabidopsis mutants resistant to S(+)-β-methyl-α, β-diaminopropionic acid, a cycad-derived glutamate receptor agonist [J].
Brenner, ED ;
Martinez-Barboza, N ;
Clark, AP ;
Liang, QS ;
Stevenson, DW ;
Coruzzi, GM .
PLANT PHYSIOLOGY, 2000, 124 (04) :1615-1624
[8]   Futile transmembrane NH+4 cycling:: A cellular hypothesis to explain ammonium toxicity in plants [J].
Britto, DT ;
Siddiqi, MY ;
Glass, ADM ;
Kronzucker, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :4255-4258
[9]   Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana [J].
Chiu, JC ;
Brenner, ED ;
DeSalle, R ;
Nitabach, MN ;
Holmes, TC ;
Coruzzi, GM .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (07) :1066-1082
[10]   Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells [J].
Cookson, SJ ;
Williams, LE ;
Miller, AJ .
PLANT PHYSIOLOGY, 2005, 138 (02) :1097-1105