Human brain activity in the control of fine static precision grip forces: an fMRI study

被引:151
作者
Kuhtz-Buschbeck, JP
Ehrsson, HH
Forssberg, H
机构
[1] Univ Kiel, Inst Physiol, D-24098 Kiel, Germany
[2] Karolinska Hosp, Motor Control Lab, Dept Woman & Child Hlth, S-17176 Stockholm, Sweden
[3] Karolinska Inst, Dept Neurosci, S-17176 Stockholm, Sweden
关键词
dexterity; fMRI; hand;
D O I
10.1046/j.0953-816x.2001.01639.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dexterous manipulation of delicate objects requires exquisite control of fingertip forces. We have used functional magnetic resonance imaging to identify brain regions involved in the skilful scaling of these forces when normal human subjects (n=8) held with precision grip a small object (weight 200 g) in the dominant right hand. In one condition, they used their normal, automatically scaled grip force. The object was held gently in a second condition; the isometric grip force was maintained just above the critical level at which the object would have slipped. In a third condition, the force was increased to hold the object with a more firm grip, The supplementary and cingulate motor areas were significantly more active during the gentle force condition than during either of the other conditions in all subjects, despite weaker contractions of the hand muscles. In addition, the left primary sensorimotor cortex, the ventral premotor cortex and the left posterior parietal cortex were more strongly activated during gentle than during normal grasping. These novel results suggest that these regions are specifically involved in dexterous scaling of fingertip forces during object manipulation.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 48 条
[1]   A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study [J].
Binkofski, F ;
Buccino, G ;
Posse, S ;
Seitz, RJ ;
Rizzolatti, G ;
Freund, HJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (09) :3276-3286
[2]   Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey [J].
Cadoret, G ;
Smith, AM .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (01) :153-166
[3]   REGIONAL CEREBRAL BLOOD-FLOW DURING VOLUNTARY ARM AND HAND MOVEMENTS IN HUMAN-SUBJECTS [J].
COLEBATCH, JG ;
DEIBER, MP ;
PASSINGHAM, RE ;
FRISTON, KJ ;
FRACKOWIAK, RSJ .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 65 (06) :1392-1401
[4]  
CRELIER GR, 2000, NEUROIMAGE, V11, P875
[5]   SUPPRESSION OF VOLUNTARY MOTOR-ACTIVITY REVEALED USING TRANSCRANIAL MAGNETIC STIMULATION OF THE MOTOR CORTEX IN MAN [J].
DAVEY, NJ ;
ROMAIGUERE, P ;
MASKILL, DW ;
ELLAWAY, PH .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 477 (02) :223-235
[6]   RELATION BETWEEN CEREBRAL-ACTIVITY AND FORCE IN THE MOTOR AREAS OF THE HUMAN BRAIN [J].
DETTMERS, C ;
FINK, GR ;
LEMON, RN ;
STEPHAN, KM ;
PASSINGHAM, RE ;
SILBERSWEIG, D ;
HOLMES, A ;
RIDDING, MC ;
BROOKS, DJ ;
FRACKOWIAK, RSJ .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (02) :802-815
[7]   Quantitative comparison of functional magnetic resonance imaging with positron emission tomography using a force-related paradigm [J].
Dettmers, C ;
Connelly, A ;
Stephan, KM ;
Turner, R ;
Friston, KJ ;
Frackowiak, RSJ ;
Gadian, DG .
NEUROIMAGE, 1996, 4 (03) :201-209
[8]  
DUM RP, 1991, J NEUROSCI, V11, P667
[9]  
Duvernoy H.M., 1991, HUMAN BRAIN SURFACE
[10]   Cortical activity in precision- versus power-grip tasks: An fMRI study [J].
Ehrsson, HH ;
Fagergren, A ;
Jonsson, T ;
Westling, G ;
Johansson, RS ;
Forssberg, H .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (01) :528-536