A projection method for low speed flows

被引:47
作者
Colella, P [1 ]
Pao, K
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] Los Alamos Natl Lab, Sci Comp Grp CIC19, Los Alamos, NM 87545 USA
基金
美国能源部;
关键词
low speed flows; projection methods; Hodge decomposition;
D O I
10.1006/jcph.1998.6152
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hedge decomposition, we may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate Various aspects of our algorithm. (C) 1999 Academic Press.
引用
收藏
页码:245 / 269
页数:25
相关论文
共 21 条
[1]   SPLITTING METHODS FOR LOW MACH NUMBER EULER AND NAVIER-STOKES EQUATIONS [J].
ABARBANEL, S ;
DUTH, P ;
GOTTLIEB, D .
COMPUTERS & FLUIDS, 1989, 17 (01) :1-12
[2]  
ANDERSON C, 1998, 8836 U CAL COMP APPL
[3]   A 2ND-ORDER PROJECTION METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS [J].
BELL, JB ;
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (02) :257-283
[4]   A 2ND-ORDER PROJECTION METHOD FOR VARIABLE-DENSITY FLOWS [J].
BELL, JB ;
MARCUS, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (02) :334-348
[5]   PRESSURE METHOD FOR THE NUMERICAL-SOLUTION OF TRANSIENT, COMPRESSIBLE FLUID-FLOWS [J].
CASULLI, V ;
GREENSPAN, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (11) :1001-1012
[6]  
Chorin A.J., 1979, MATH INTRO FLUID MEC
[7]   MULTIDIMENSIONAL UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS [J].
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) :171-200
[8]   NAVIER-STOKES EQUATIONS FOR ALMOST INCOMPRESSIBLE-FLOW [J].
GUSTAFSSON, B ;
STOOR, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1523-1547
[9]  
Harlow F. H., 1968, Journal of Computational Physics, V3, P80, DOI 10.1016/0021-9991(68)90007-7
[10]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&