Acetylation is indispensable for p53 activation

被引:704
作者
Tang, Yi [1 ]
Zhao, Wenhui [1 ]
Chen, Yue [3 ]
Zhao, Yingming [3 ]
Gu, Wei [1 ,2 ]
机构
[1] Columbia Univ, Coll Phys & Surg, Inst Canc Genet, New York, NY 10032 USA
[2] Columbia Univ, Coll Phys & Surg, Dept Pathol & Cell Biol, New York, NY 10032 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1016/j.cell.2008.03.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 and enables the p53-mediated stress response.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 53 条
[1]   Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53 [J].
An, W ;
Kim, J ;
Roeder, RG .
CELL, 2004, 117 (06) :735-748
[2]  
Aparicio O, 2004, CURR PROTOC CELL BIO, V17
[3]   A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells [J].
Arva, NC ;
Gopen, TR ;
Talbott, KE ;
Campbell, LE ;
Chicas, A ;
White, DE ;
Bond, GL ;
Levine, AJ ;
Bargonetti, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (29) :26776-26787
[4]   Stress signals utilize multiple pathways to stabilize p53 [J].
Ashcroft, M ;
Taya, Y ;
Vousden, KH .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (09) :3224-3233
[5]  
Ashcroft M, 1999, MOL CELL BIOL, V19, P1751
[6]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[7]   The complex language of chromatin regulation during transcription [J].
Berger, Shelley L. .
NATURE, 2007, 447 (7143) :407-412
[8]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[9]   DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation [J].
Blattner, C ;
Tobiasch, E ;
Litfen, M ;
Rahmsdorf, HJ ;
Herrlich, P .
ONCOGENE, 1999, 18 (09) :1723-1732
[10]   Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation [J].
Brooks, CL ;
Gu, W .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :164-171