Comprehensive high-throughput arrays for relative methylation (CHARM)

被引:308
作者
Irizarry, Rafael A. [1 ]
Ladd-Acosta, Christine [2 ,3 ]
Carvalho, Benilton [1 ]
Wu, Hao [1 ]
Brandenburg, Sheri A. [2 ,3 ]
Jeddeloh, Jeffrey A. [4 ]
Wen, Bo [2 ,3 ]
Feinberg, Andrew P. [2 ,3 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21205 USA
[4] Genomics LLC, St Louis, MO 63108 USA
关键词
D O I
10.1101/gr.7301508
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study was originally conceived to test in a rigorous way the specificity of three major approaches to high-throughput array-based DNA methylation analysis: (1) MeDIP, or methylated DNA immunoprecipitation, an example of antibody-mediated methyl-specific fractionation; (2) HELP, or HpaII tiny fragment enrichment by ligation-mediated PCR, an example of differential amplification of methylated DNA; and (3) fractionation by McrBC, an enzyme that cuts most methylated DNA. These results were validated using 1466 Illumina methylation probes on the GoldenGate methylation assay and further resolved discrepancies among the methods through quantitative methylation pyrosequencing analysis. While all three methods provide useful information, there were significant limitations to each, specifically bias toward CpG islands in MeDIP, relatively incomplete coverage in HELP, and location imprecision in McrBC. However, we found that with an original array design strategy using tiling arrays and statistical procedures that average information from neighboring genomic locations, much improved specificity and sensitivity could be achieved, e. g., similar to 100% sensitivity at 90% specificity with McrBC. We term this approach "comprehensive high-throughput arrays for relative methylation" (CHARM). While this approach was applied to McrBC analysis, the array design and computational algorithms are fractionation method-independent and make this a simple, general, relatively inexpensive tool suitable for genome-wide analysis, and in which individual samples can be assayed reliably at very high density, allowing locus-level genome-wide epigenetic discrimination of individuals, not just groups of samples. Furthermore, unlike the other approaches, CHARM is highly quantitative, a substantial advantage in application to the study of human disease.
引用
收藏
页码:780 / 790
页数:11
相关论文
共 35 条
[1]   Molecular characterization of the tumor microenvironment in breast cancer [J].
Allinen, M ;
Beroukhim, R ;
Cai, L ;
Brennan, C ;
Lahti-Domenici, J ;
Huang, HY ;
Porter, D ;
Hu, M ;
Chin, L ;
Richardson, A ;
Schnitt, S ;
Sellers, WR ;
Polyak, K .
CANCER CELL, 2004, 6 (01) :17-32
[2]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[3]   High-throughput DNA methylation profiling using universal bead arrays [J].
Bibikova, M ;
Lin, ZW ;
Zhou, LX ;
Chudin, E ;
Garcia, EW ;
Wu, B ;
Doucet, D ;
Thomas, NJ ;
Wang, YH ;
Vollmer, E ;
Goldmann, T ;
Seifart, C ;
Jiang, W ;
Barker, DL ;
Chee, MS ;
Floros, J ;
Fan, JB .
GENOME RESEARCH, 2006, 16 (03) :383-393
[4]   NONMETHYLATED CPG-RICH ISLANDS AT THE HUMAN ALPHA-GLOBIN LOCUS - IMPLICATIONS FOR EVOLUTION OF THE ALPHA-GLOBIN PSEUDOGENE [J].
BIRD, AP ;
TAGGART, MH ;
NICHOLLS, RD ;
HIGGS, DR .
EMBO JOURNAL, 1987, 6 (04) :999-1004
[5]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[6]   The emerging science of epigenomics [J].
Callinan, PA ;
Feinberg, AP .
HUMAN MOLECULAR GENETICS, 2006, 15 :R95-R101
[7]   De novo quantitative bisulfite sequencing using the pyrosequencing technology [J].
Dupont, JM ;
Tost, J ;
Jammes, H ;
Gut, NG .
ANALYTICAL BIOCHEMISTRY, 2004, 333 (01) :119-127
[8]   MethyLight: a high-throughput assay to measure DNA methylation [J].
Eads, Cindy A. ;
Danenberg, Kathleen D. ;
Kawakami, Kazuyuki ;
Saltz, Leonard B. ;
Blake, Corey ;
Shibata, Darryl ;
Danenberg, Peter V. ;
Laird, Peter W. .
NUCLEIC ACIDS RESEARCH, 2000, 28 (08) :32
[9]   DNA methylation profiling of human chromosomes 6, 20 and 22 [J].
Eckhardt, Florian ;
Lewin, Joern ;
Cortese, Rene ;
Rakyan, Vardhman K. ;
Attwood, John ;
Burger, Matthias ;
Burton, John ;
Cox, Tony V. ;
Davies, Rob ;
Down, Thomas A. ;
Haefliger, Carolina ;
Horton, Roger ;
Howe, Kevin ;
Jackson, David K. ;
Kunde, Jan ;
Koenig, Christoph ;
Liddle, Jennifer ;
Niblett, David ;
Otto, Thomas ;
Pettett, Roger ;
Seemann, Stefanie ;
Thompson, Christian ;
West, Tony ;
Rogers, Jane ;
Olek, Alex ;
Berlin, Kurt ;
Beck, Stephan .
NATURE GENETICS, 2006, 38 (12) :1378-1385
[10]   Epigenetics provides a new generation of oncogenes and tumour-suppressor genes [J].
Esteller, M .
BRITISH JOURNAL OF CANCER, 2006, 94 (02) :179-183