ARIEL and AMELIA: Testing for an Accumulation of Rare Variants Using Next-Generation Sequencing Data

被引:37
作者
Asimit, Jennifer L. [1 ]
Day-Williams, Aaron G. [1 ]
Morris, Andrew P. [2 ]
Zeggini, Eleftheria [1 ]
机构
[1] Wellcome Trust Sanger Inst, Cambridge CB10 1HH, England
[2] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
基金
英国惠康基金;
关键词
Whole-genonne sequencing; Exonne sequencing; Association analysis; Accounting for uncertainty; Complex trait; COMMON DISEASES; ASSOCIATION; CONTRIBUTE;
D O I
10.1159/000336982
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: There is increasing evidence that rare variants play a role in some complex traits, but their analysis is not straightforward. Locus-based tests become necessary due to low power in rare variant single-point association analyses. In addition, variant quality scores are available for sequencing data, but are rarely taken into account. Here, we propose two locus-based methods that incorporate variant quality scores: a regression-based collapsing approach and an allele-matching method. Methods: Using simulated sequencing data we compare 4 locus-based tests of trait association under different scenarios of data quality. We test two collapsing-based approaches and two allele-matching-based approaches, taking into account variant quality scores and ignoring variant quality scores. We implement the collapsing and allele-matching approaches accounting for variant quality in the freely available ARIEL and AMELIA software. Results: The incorporation of variant quality scores in locus-based association tests has power advantages over weighting each variant equally. The allele-matching methods are robust to the presence of both protective and risk variants in a locus, while collapsing methods exhibit a dramatic loss of power in this scenario. Conclusions: The incorporation of variant quality scores should be a standard protocol when performing locus-based association analysis on sequencing data. The ARIEL and AMELIA software implement collapsing and allele-matching locus association analysis methods, respectively, that allow the incorporation of variant quality scores. Copyright (C) 2012 S. Karger AG, Basel
引用
收藏
页码:84 / 94
页数:11
相关论文
共 18 条
[1]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[2]   A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes [J].
Bhatia, Gaurav ;
Bansal, Vikas ;
Harismendy, Olivier ;
Schork, Nicholas J. ;
Topol, Eric J. ;
Frazer, Kelly ;
Bafna, Vineet .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (10)
[3]   Common and rare variants in multifactorial susceptibility to common diseases [J].
Bodmer, Walter ;
Bonilla, Carolina .
NATURE GENETICS, 2008, 40 (06) :695-701
[4]   Multiple rare Alleles contribute to low plasma levels of HDL cholesterol [J].
Cohen, JC ;
Kiss, RS ;
Pertsemlidis, A ;
Marcel, YL ;
McPherson, R ;
Hobbs, HH .
SCIENCE, 2004, 305 (5685) :869-872
[5]   A Data-Adaptive Sum Test for Disease Association with Multiple Common or Rare Variants [J].
Han, Fang ;
Pan, Wei .
HUMAN HEREDITY, 2010, 70 (01) :42-54
[6]   A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease [J].
Ionita-Laza, Iuliana ;
Buxbaum, Joseph D. ;
Laird, Nan M. ;
Lange, Christoph .
PLOS GENETICS, 2011, 7 (02)
[7]   Rare independent mutations in renal salt handling genes contribute to blood pressure variation [J].
Ji, Weizhen ;
Foo, Jia Nee ;
O'Roak, Brian J. ;
Zhao, Hongyu ;
Larson, Martin G. ;
Simon, David B. ;
Newton-Cheh, Christopher ;
State, Matthew W. ;
Levy, Daniel ;
Lifton, Richard P. .
NATURE GENETICS, 2008, 40 (05) :592-599
[8]   CCRaVAT and QuTie - enabling analysis of rare variants in large-scale case control and quantitative trait association studies [J].
Lawrence, Robert ;
Day-Williams, Aaron G. ;
Elliott, Katherine S. ;
Morris, Andrew P. ;
Zeggini, Eleftheria .
BMC BIOINFORMATICS, 2010, 11
[9]   Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data [J].
Li, Bingshan ;
Leal, Suzanne M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (03) :311-321
[10]   A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic [J].
Madsen, Bo Eskerod ;
Browning, Sharon R. .
PLOS GENETICS, 2009, 5 (02)