MR brain image segmentation using an enhanced fuzzy C-means algorithm
被引:360
作者:
Szilágyi, L
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, HungaryBudapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
Szilágyi, L
[1
]
Benyó, Z
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, HungaryBudapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
Benyó, Z
[1
]
Szilágyi, SM
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, HungaryBudapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
Szilágyi, SM
[1
]
Adam, HS
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, HungaryBudapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
Adam, HS
[1
]
机构:
[1] Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
来源:
PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH
|
2003年
/
25卷
关键词:
MR imaging;
image segmentation;
fuzzy logic;
D O I:
10.1109/IEMBS.2003.1279866
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
This paper presents a new algorithm for fuzzy segmentation of MR brain images. Starting from the standard FCM [1] and its bias-corrected version BCFCM [2] algorithm, by splitting up the two major steps of the latter, and by introducing a new factor gamma, the amount of required calculations is considerably reduced. The algorithm provides good-quality segmented brain images a very quick way, which makes it an excellent tool to support virtual brain endoscopy. This research has been supported by the Hungarian National Research Fund, Grants No. OTKA T042990 and T029830.