On the influence of noise on the largest Lyapunov exponent of attractors of stochastic dynamic systems

被引:8
作者
Argyris, J [1 ]
Andreadis, I [1 ]
机构
[1] Univ Stuttgart, Inst Comp Applicat 1, D-70569 Stuttgart, Germany
关键词
D O I
10.1016/S0960-0779(97)00146-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the magnitude of the largest Lyapunov exponent of attractors appartaining to stochastic dynamic systems is increasing under the influence of noise. Thus we offer an answer to the conjecture posed by Argyris et al. in [1]. We investigate also the influence of an additive output noise to the correlation dimension and on the largest Lyapunov exponent of the attractors of dynamic systems either in a discrete or in a continuous in time formulation. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:959 / 963
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 1980, DYNAMICAL SYSTEMS TU
[2]   The influence of noise on the correlation dimension of chaotic attractors [J].
Argyris, J ;
Andreadis, I ;
Pavlos, G ;
Athanasiou, M .
CHAOS SOLITONS & FRACTALS, 1998, 9 (03) :343-361
[3]   On the influence of noise on the largest Lyapunov exponent and on the geometric structure of attractors [J].
Argyris, J ;
Andreadis, I ;
Pavlos, G ;
Athanasiou, M .
CHAOS SOLITONS & FRACTALS, 1998, 9 (06) :947-958
[4]  
Argyris JH, 1994, EXPLORATION CHAOS
[5]  
GOLUBITSKY M, 1973, STABLE MAPPINS THEIR
[6]  
Lasota A., 1994, Applied Mathematical Sciences, V2nd
[7]   Effects of noise on chaotic one-dimensional maps [J].
Malescio, G .
PHYSICS LETTERS A, 1996, 218 (1-2) :25-29
[8]  
Ozaki T., 1985, HDB STATISTICS, V5, P25
[9]   DETERMINING LYAPUNOV EXPONENTS FROM A TIME-SERIES [J].
WOLF, A ;
SWIFT, JB ;
SWINNEY, HL ;
VASTANO, JA .
PHYSICA D, 1985, 16 (03) :285-317