Reactive oxygen species stimulate VEGF production from C2C12 skeletal myotubes through a PI3K/Akt pathway

被引:63
作者
Kosmidou, I
Xagorari, A
Roussos, C
Papapetropoulos, A
机构
[1] Univ Athens, Evangelismos Hosp, Crit Care Dept, George P Livanos Lab, Athens 10675, Greece
[2] Univ Athens, Evangelismos Hosp, Pulm Serv, Athens 10675, Greece
关键词
exercise; vascular endothelial growth factor; phosphatidylinositol; 3-kinase; protein kinase B;
D O I
10.1152/ajplung.2001.280.4.L585
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulus, the expression of which increases in skeletal muscle after exercise. Because exercise is also accompanied by increased intramuscular reactive oxygen species (ROS) generation, we tested the hypothesis that ROS stimulate VEGF production from skeletal myotubes. Differentiated C2C12 skeletal myotubes exposed to ROS-producing agents exhibited a concentration-dependent increase in VEGF production, whereas undifferentiated myoblasts did not respond to oxidants. Moreover, conditioned medium from ROS-treated myotubes increased the bovine lung microvascular cell proliferation rate. To study the mechanism(s) involved in the stimulation of VEGF production by ROS, myotubes were pretreated with a selective phosphatidylinositol 3-kinase (PI3K) inhibitor, LY-294002, before being exposed to hydrogen peroxide or pyrogallol. LY-294002 attenuated both Akt phosphorylation and VEGF production. In addition, oxidants increased nuclear factor-kappaB-dependent promoter activity in transiently transfected myotubes; however, pretreatment with the pharmacological inhibitor of nuclear factor-kappaB, diethyldithiocarbamate, did not affect the oxidant-stimulated VEGF release. We conclude that ROS induce VEGF release from myotubes via a PI3K/Akt-dependent pathway.
引用
收藏
页码:L585 / L592
页数:8
相关论文
共 40 条
[1]   Induction and maintenance of increased VEGF protein by chronic motor nerve stimulation in skeletal muscle [J].
Annex, BH ;
Torgan, CE ;
Lin, PN ;
Taylor, DA ;
Thompson, MA ;
Peters, KG ;
Kraus, WE .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 274 (03) :H860-H867
[2]  
Beinert T, 1999, Eur J Med Res, V4, P328
[3]   Effect of NO, vasodilator prostaglandins, and adenosine on skeletal muscle angiogenic growth factor gene expression [J].
Benoit, H ;
Jordan, M ;
Wagner, H ;
Wagner, PD .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 86 (05) :1513-1518
[4]   Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes [J].
Brauchle, M ;
Funk, JO ;
Kind, P ;
Werner, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (36) :21793-21797
[5]   Angiogenic growth factor mRNA responses in muscle to a single bout of exercise [J].
Breen, EC ;
Johnson, EC ;
Wagner, H ;
Tseng, HM ;
Sung, LA ;
Wagner, PD .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 81 (01) :355-361
[6]  
BRODAL P, 1977, AM J PHYSIOL, V232, P705
[7]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[8]   Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele [J].
Carmeliet, P ;
Ferreira, V ;
Breier, G ;
Pollefeyt, S ;
Kieckens, L ;
Gertsenstein, M ;
Fahrig, M ;
Vandenhoeck, A ;
Harpal, K ;
Eberhardt, C ;
Declercq, C ;
Pawling, J ;
Moons, L ;
Collen, D ;
Risau, W ;
Nagy, A .
NATURE, 1996, 380 (6573) :435-439
[9]   Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial, cells [J].
Chua, CC ;
Hamdy, RC ;
Chua, BHL .
FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 (08) :891-897
[10]   FREE-RADICALS AND TISSUE-DAMAGE PRODUCED BY EXERCISE [J].
DAVIES, KJA ;
QUINTANILHA, AT ;
BROOKS, GA ;
PACKER, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1982, 107 (04) :1198-1205