Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms

被引:36
作者
Brooks, RR
Iyengar, SS
Chen, J
机构
[1] Louisiana State University, Baton Rouge
关键词
genetic algorithms; tabu search; sensor fusion; noise reduction; image matching;
D O I
10.1016/0004-3702(96)00012-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1988, Introduction to Sensor Systems
[2]  
Baird H.S., 1985, MODEL BASED IMAGE MA
[3]  
BARROW HG, 1977, 5TH P INT JOINT C AR, P659
[4]  
Battiti R., 1994, ORSA Journal on Computing, V6, P126, DOI 10.1287/ijoc.6.2.126
[5]  
Bean J. C., 1994, ORSA Journal on Computing, V6, P154, DOI 10.1287/ijoc.6.2.154
[6]  
BOOKER LB, 1990, MACH LEARN, P234
[7]  
CARBONELL J, 1990, MACH LEARN, P3
[8]  
COX IJ, 1988, P 2 INT C COMP VIS, P252
[9]  
DAVALO E, 1989, RESEAUX NEURONES, P188
[10]   SHAPE MATCHING USING RELAXATION TECHNIQUES [J].
DAVIS, LS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (01) :60-72