The amino-acid mutational spectrum of human genetic disease

被引:160
作者
Vitkup, D
Sander, C
Church, GM [1 ]
机构
[1] Harvard Univ, Sch Med, Lipper Ctr Computat Genet, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[3] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
关键词
D O I
10.1186/gb-2003-4-11-r72
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Nonsynonymous mutations in the coding regions of human genes are responsible for phenotypic differences between humans and for susceptibility to genetic disease. Computational methods were recently used to predict deleterious effects of nonsynonymous human mutations and polymorphisms. Here we focus on understanding the amino-acid mutation spectrum of human genetic disease. We compare the disease spectrum to the spectra of mutual amino-acid mutation frequencies, non-disease polymorphisms in human genes, and substitutions fixed between species. Results: We find that the disease spectrum correlates well with the amino-acid mutation frequencies based on the genetic code. Normalized by the mutation frequencies, the spectrum can be rationalized in terms of chemical similarities between amino acids. The disease spectrum is almost identical for membrane and non-membrane proteins. Mutations at arginine and glycine residues are together responsible for about 30% of genetic diseases, whereas random mutations at tryptophan and cysteine have the highest probability of causing disease. Conclusions: The overall disease spectrum mainly reflects the mutability of the genetic code. We corroborate earlier results that the probability of a nonsynonymous mutation causing a genetic disease increases monotonically with an increase in the degree of evolutionary conservation of the mutation site and a decrease in the solvent-accessibility of the site; opposite trends are observed for non-disease polymorphisms. We estimate that the rate of nonsynonymous mutations with a negative impact on human health is less than one per diploid genome per generation.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
[Anonymous], 1978, Atlas of protein sequence and structure
[3]   The SWISS-PROT protein sequence data bank and its new supplement TREMBL [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1996, 24 (01) :21-25
[4]   AMINO-ACID SUBSTITUTION DURING FUNCTIONALLY CONSTRAINED DIVERGENT EVOLUTION OF PROTEIN SEQUENCES [J].
BENNER, SA ;
COHEN, MA ;
GONNET, GH .
PROTEIN ENGINEERING, 1994, 7 (11) :1323-1332
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]   Solvent accessibility and purifying selection within proteins of Escherichia coli and Salmonella enterica [J].
Bustamante, CD ;
Townsend, JP ;
Hartl, DL .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (02) :301-308
[7]   Characterization of single-nucleotide polymorphisms in coding regions of human genes [J].
Cargill, M ;
Altshuler, D ;
Ireland, J ;
Sklar, P ;
Ardlie, K ;
Patil, N ;
Lane, CR ;
Lim, EP ;
Kalyanaraman, N ;
Nemesh, J ;
Ziaugra, L ;
Friedland, L ;
Rolfe, A ;
Warrington, J ;
Lipshutz, R ;
Daley, GQ ;
Lander, ES .
NATURE GENETICS, 1999, 22 (03) :231-238
[8]   Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation [J].
Chasman, D ;
Adams, RM .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :683-706
[9]   THE CPG DINUCLEOTIDE AND HUMAN GENETIC-DISEASE [J].
COOPER, DN ;
YOUSSOUFIAN, H .
HUMAN GENETICS, 1988, 78 (02) :151-155
[10]   High genomic deleterious mutation rates in hominids [J].
Eyre-Walker, A ;
Keightley, PD .
NATURE, 1999, 397 (6717) :344-347