Gold nanocages: Engineering their structure for biomedical applications

被引:516
作者
Chen, JY
Wiley, B
Li, ZY
Campbell, D
Saeki, F
Cang, H
Au, L
Lee, J
Li, XD
Xia, YN [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[3] Chinese Acad Sci, Inst Phys, Beijing 10080, Peoples R China
[4] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/adma.200500833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The galvanic replacement reaction between a Ag template and HAuCl4 in an aqueous solution transforms 30-200 mn Ag nanocubes into Au nanoboxes and nanocages (nanoboxes with porous walls). By controlling the molar ratio of Ag to HAuCl4, the extinction peak of resultant structures can be continuously tuned from the blue (400 nm) to the near-infrared (1200 nm) region of the electromagnetic spectrum. These hollow An nanostructures are characterized by extraordinarily large cross sections for both absorption and scattering. Optical coherence tomography measurements indicate that the 36 nm nanocage has a scattering cross-section of similar to 0.8 X 10(-15) m(2) and an absorption cross-section of similar to 7.3 X 10(-15) m(2). The absorption cross-section is more than five orders of magnitude larger than those of conventional organic dyes. Exposure of Au nanocages to a camera flash resulted in the melting and conversion of Au nanocages into spherical particles due to photothermal heating. Discrete-di poleapproximation calculations suggest that the magnitudes of both scattering and absorption cross-sections of An nanocages can be tailored by controlling their dimensions, as well as the thickness and porosity of their walls. This novel class of hollow nanostructures is expected to find use as both a contrast agent for optical imaging in early stage tumor detection and as a therapeutic agent for photothermal cancer treatment.
引用
收藏
页码:2255 / 2261
页数:7
相关论文
共 37 条
[1]   PLASMA RESONANCE ENHANCED RAMAN-SCATTERING BY ADSORBATES ON GOLD COLLOIDS - THE EFFECTS OF AGGREGATION [J].
BLATCHFORD, CG ;
CAMPBELL, JR ;
CREIGHTON, JA .
SURFACE SCIENCE, 1982, 120 (02) :435-455
[2]  
Caruso F, 2001, ADV MATER, V13, P1090, DOI 10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO
[3]  
2-H
[4]   The shape transition of gold nanorods [J].
Chang, SS ;
Shih, CW ;
Chen, CD ;
Lai, WC ;
Wang, CRC .
LANGMUIR, 1999, 15 (03) :701-709
[5]   Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J].
Chen, J ;
Saeki, F ;
Wiley, BJ ;
Cang, H ;
Cobb, MJ ;
Li, ZY ;
Au, L ;
Zhang, H ;
Kimmey, MB ;
Li, XD ;
Xia, YN .
NANO LETTERS, 2005, 5 (03) :473-477
[6]   Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].
Elghanian, R ;
Storhoff, JJ ;
Mucic, RC ;
Letsinger, RL ;
Mirkin, CA .
SCIENCE, 1997, 277 (5329) :1078-1081
[7]  
FARADAY M., 1857, PHILOS T ROY SOC LON, V147, P145, DOI [DOI 10.1098/RSTL.1857.0011, 10.1098/rstl.1857.0011]
[8]  
Fievet F., 1989, M RS Bulletin, V74, P29, DOI [10.1557/S0883769400060930, DOI 10.1557/S0883769400060930]
[9]   TEMPLATE-SYNTHESIZED NANOSCOPIC GOLD PARTICLES - OPTICAL-SPECTRA AND THE EFFECTS OF PARTICLE-SIZE AND SHAPE [J].
FOSS, CA ;
HORNYAK, GL ;
STOCKERT, JA ;
MARTIN, CR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (11) :2963-2971
[10]   Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J].
Hirsch, LR ;
Stafford, RJ ;
Bankson, JA ;
Sershen, SR ;
Rivera, B ;
Price, RE ;
Hazle, JD ;
Halas, NJ ;
West, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13549-13554