The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis

被引:228
作者
Kang, Il-Ho [1 ]
Steffen, Joshua G. [1 ]
Portereiko, Michael F. [1 ]
Lloyd, Alan [1 ]
Drews, Gary N. [1 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
关键词
D O I
10.1105/tpc.107.055137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endosperm, a storage tissue in the angiosperm seed, provides nutrients to the embryo during seed development and/or to the developing seedling during germination. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. The molecular processes controlling this phase transition are not understood. In agl62 seeds, the endosperm cellularizes prematurely, indicating that AGL62 is required for suppression of cellularization during the syncytial phase. AGL62 encodes a Type I MADS domain protein that likely functions as a transcription factor. During seed development, AGL62 is expressed exclusively in the endosperm. During wild-type endosperm development, AGL62 expression is strong during the syncytial phase and then declines abruptly just before cellularization. By contrast, in mutant seeds containing defects in some FERTILIZATION-INDEPENDENT SEED (FIS) class Polycomb group genes, the endosperm fails to cellularize and AGL62 expression fails to decline. Together, these data suggest that AGL62 suppresses cellularization during the syncytial phase of endosperm development and that endosperm cellularization is triggered via direct or indirect AGL62 inactivation by the FIS polycomb complex.
引用
收藏
页码:635 / 647
页数:13
相关论文
共 75 条
[1]  
Adams S, 2000, DEVELOPMENT, V127, P2493
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains [J].
Boisnard-Lorig, C ;
Colon-Carmona, A ;
Bauch, W ;
Hodge, S ;
Doerner, P ;
Bancharel, E ;
Dumas, C ;
Haseloff, J ;
Berger, F .
PLANT CELL, 2001, 13 (03) :495-509
[4]   FACTORS CONTROLLING GRAIN WEIGHT IN WHEAT [J].
BROCKLEHURST, PA .
NATURE, 1977, 266 (5600) :348-349
[5]   Development of endosperm in Arabidopsis thaliana [J].
Brown, RC ;
Lemmon, BE ;
Nguyen, H ;
Olsen, OA .
SEXUAL PLANT REPRODUCTION, 1999, 12 (01) :32-42
[6]   Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana [J].
Brown, RC ;
Lemmon, BE ;
Nguyen, H .
PROTOPLASMA, 2003, 222 (3-4) :167-174
[7]   The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species [J].
Bushell, C ;
Spielman, M ;
Scott, RJ .
PLANT CELL, 2003, 15 (06) :1430-1442
[8]   CELL PRODUCTION AND DNA ACCUMULATION IN THE WHEAT ENDOSPERM, AND THEIR ASSOCIATION WITH GRAIN WEIGHT [J].
CHOJECKI, AJS ;
BAYLISS, MW ;
GALE, MD .
ANNALS OF BOTANY, 1986, 58 (06) :809-817
[9]   Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis [J].
Christensen, CA ;
Subramanian, S ;
Drews, GN .
DEVELOPMENTAL BIOLOGY, 1998, 202 (01) :136-151
[10]   Megagametogenesis in Arabidopsis wild type and the Gf mutant [J].
Christensen, CA ;
King, EJ ;
Jordan, JR ;
Drews, GN .
SEXUAL PLANT REPRODUCTION, 1997, 10 (01) :49-64