Incorporating asymmetric connectivity into spatial decision making for conservation

被引:119
作者
Beger, Maria [1 ,2 ]
Linke, Simon [1 ,2 ,3 ,4 ]
Watts, Matt [1 ,2 ]
Game, Eddie [1 ,2 ,5 ]
Treml, Eric [1 ,2 ]
Ball, Ian [6 ]
Possingham, Hugh P. [1 ,2 ]
机构
[1] Univ Queensland, Sch Biol Sci, Ctr Ecol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Commonwealth Res Facil Appl Environm Decis Anal, Brisbane, Qld 4072, Australia
[3] Univ Canberra, EWater CRC, Canberra, ACT 2601, Australia
[4] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia
[5] Nature Conservancy, TNC, Brisbane, Qld 4101, Australia
[6] Australian Antarctic Div Channel Highway Kingston, Kingston, Tas 7050, Australia
来源
CONSERVATION LETTERS | 2010年 / 3卷 / 05期
关键词
Connectivity; conservation planning; site prioritization; river conservation; marine conservation; larval dispersal; Marxan; Great Barrier Reef; Snowy River; REEF FISH; MARINE RESERVES; DISPERSAL; METAPOPULATIONS; PERSISTENCE; MATTER;
D O I
10.1111/j.1755-263X.2010.00123.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Real patterns of ecological connectivity are seldom explicitly or systematically accounted for systematic conservation planning, in part because commonly used decision support systems can only capture simplistic notions of connectivity. Conventionally, the surrogates used to represent connectivity in conservation plans have assumed the connection between two sites to be symmetric in strength. In reality, ecological linkages between sites are rarely symmetric and often strongly asymmetric. Here, we develop a novel formulation that enabled us to incorporate asymmetric connectivity into the conservation decision support system Marxan. We illustrate this approach using hypothetical examples of a river catchment and a group of reefs, and then apply it to case studies in the Snowy River catchment and Great Barrier Reef, Australia. We show that incorporating asymmetric ecological connectivity in systematic reserve design leads to solutions that more effectively capture connectivity patterns, relative to either ignoring connectivity or assuming symmetric connectivity.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 41 条
[1]   Local replenishment of coral reef fish populations in a marine reserve [J].
Almany, Glenn R. ;
Berumen, Michael L. ;
Thorrold, Simon R. ;
Planes, Serge ;
Jones, Geoffrey P. .
SCIENCE, 2007, 316 (5825) :742-744
[2]  
Ball IR., 2009, SPATIAL CONSERVATION, P185, DOI DOI 10.1016/J.CJCA.2015.05.027
[3]  
Batagelj V, 2004, MATH VIS, P77
[4]   Conservation planning for connectivity across marine, freshwater, and terrestrial realms [J].
Beger, Maria ;
Grantham, Hedley S. ;
Pressey, Robert L. ;
Wilson, Kerrie A. ;
Peterson, Eric L. ;
Dorfman, Daniel ;
Mumby, Peter J. ;
Lourival, Reinaldo ;
Brumbaugh, Daniel R. ;
Possingham, Hugh P. .
BIOLOGICAL CONSERVATION, 2010, 143 (03) :565-575
[5]   Forks in the road: Choices in procedures for designing wildland linkages [J].
Beier, Paul ;
Majka, Daniel R. ;
Spencer, Wayne D. .
CONSERVATION BIOLOGY, 2008, 22 (04) :836-851
[6]   Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns [J].
Bode, Michael ;
Burrage, Kevin ;
Possingham, Hugh P. .
ECOLOGICAL MODELLING, 2008, 214 (2-4) :201-209
[7]   Scaling of connectivity in marine populations [J].
Cowen, RK ;
Paris, CB ;
Srinivasan, A .
SCIENCE, 2006, 311 (5760) :522-527
[8]  
Fagan WF, 2006, ECOL APPL, V16, P820, DOI 10.1890/1051-0761(2006)016[0820:ADSLHR]2.0.CO
[9]  
2
[10]  
Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO