Osteogenic enrichment of bone-marrow stromal cells with the use of flow chamber and type I collagen-coated surface

被引:20
作者
Lan, CW
Wang, FF
Wang, YJ [1 ]
机构
[1] Natl Yang Ming Univ, Inst Biomed Engn, Taipei 112, Taiwan
[2] Natl Yang Ming Univ, Inst Biochem, Taipei 112, Taiwan
来源
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A | 2003年 / 66A卷 / 01期
关键词
bone marrow stromal cell; collagen; osteoblast; flow chamber;
D O I
10.1002/jbm.a.10507
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The stromal cells of the bone marrow are able to attach to the surface and differentiate into cells with bone-forming capability when stimulated with osteogenic supplements. In this study, we have employed a flow-chamber device containing a collagen-coated surface to enrich the potential osteoprogenitor cells from bone marrow stromal cells (BMSCs). The population of the cells attached to the collagen-coated substratum is about twice that attached to the uncoated surface. In the flow chamber, almost all marrow cells attached on the untreated glass were flushed out at the shear stress of 1.10 dyne/cm(2). On the other hand, 25% of the marrow cells remained attached to the collagen-coated glass, even under the shear stress of 1.30 dyne/cm(2). The collagen-attached marrow cells exhibited similar, specific alkaline phosphatase activity compared with that of the cells attached to the uncoated dish in the early stage of culturing. Nevertheless, only the collagen -attached marrow cells later expressed significant amounts of osteocalcin, which is a specific marker for osteoblast cells. Thus, we have successfully developed a protocol that uses a collagen-coated surface efficiently in a flow chamber to enrich the osteogenic cells from the BMSCs. This provides a useful tool to obtain osteogenic cells from bone marrow for biologic and clinical applications. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 32 条
[1]   GROWTH ON TYPE-I COLLAGEN PROMOTES EXPRESSION OF THE OSTEOBLASTIC PHENOTYPE IN HUMAN OSTEOSARCOMA MG-63 CELLS [J].
ANDRIANARIVO, AG ;
ROBINSON, JA ;
MANN, KG ;
TRACY, RP .
JOURNAL OF CELLULAR PHYSIOLOGY, 1992, 153 (02) :256-265
[2]   FACTORS THAT PROMOTE PROGRESSIVE DEVELOPMENT OF THE OSTEOBLAST PHENOTYPE IN CULTURED FETAL-RAT CALVARIA CELLS [J].
ARONOW, MA ;
GERSTENFELD, LC ;
OWEN, TA ;
TASSINARI, MS ;
STEIN, GS ;
LIAN, JB .
JOURNAL OF CELLULAR PHYSIOLOGY, 1990, 143 (02) :213-221
[3]  
ASHTON BA, 1980, CLIN ORTHOP RELAT R, P294
[4]  
BAB I, 1986, J CELL SCI, V84, P139
[5]   BONE-MARROW DERIVED STROMAL CELL-LINE EXPRESSING OSTEOBLASTIC PHENOTYPE INVITRO AND OSTEOGENIC CAPACITY INVIVO [J].
BENAYAHU, D ;
KLETTER, Y ;
ZIPORI, D ;
WIENTROUB, S .
JOURNAL OF CELLULAR PHYSIOLOGY, 1989, 140 (01) :1-7
[6]  
BRUDER SP, 1994, J CELL BIOCHEM, V56, P529
[7]   DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE [J].
CHENG, SL ;
YANG, JW ;
RIFAS, L ;
ZHANG, SF ;
AVIOLI, LV .
ENDOCRINOLOGY, 1994, 134 (01) :277-286
[8]   MECHANISM OF ACTION OF BETA-GLYCEROPHOSPHATE ON BONE CELL MINERALIZATION [J].
CHUNG, CH ;
GOLUB, EE ;
FORBES, E ;
TOKUOKA, T ;
SHAPIRO, IM .
CALCIFIED TISSUE INTERNATIONAL, 1992, 51 (04) :305-311
[9]   Human bone cell cultures in biocompatibility testing.: Part II:: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation [J].
Coelho, MJ ;
Fernandes, MH .
BIOMATERIALS, 2000, 21 (11) :1095-1102
[10]   STRUCTURE AND BIOLOGY OF CARTILAGE AND BONE-MATRIX NONCOLLAGENOUS MACROMOLECULES [J].
HEINEGARD, D ;
OLDBERG, A .
FASEB JOURNAL, 1989, 3 (09) :2042-2051