RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events

被引:44
作者
Buratti, Emanuele
Dhir, Ashish
Lewandowska, Marzena A.
Baralle, Francisco E.
机构
[1] International Centre for Genetic Engineering and Biotechnology (ICGEB)
[2] Children's Memorial Research Centre, Northwestern University Feinberg School of Medicine, Chicago, IL 60614
关键词
D O I
10.1093/nar/gkm447
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5'ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5'ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5'ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting.
引用
收藏
页码:4369 / 4383
页数:15
相关论文
共 64 条
[1]   Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: Indication for steric hindrance of SR protein binding sites [J].
Aartsma-Rus, A ;
De Winter, CL ;
Janson, AAM ;
Kaman, WE ;
Van Ommen, GJB ;
Den Dunnen, JT ;
van Deutekom, JCT .
OLIGONUCLEOTIDES, 2005, 15 (04) :284-297
[2]   Searching for IRES [J].
Baird, Stephen D. ;
Turcotte, Marcel ;
Korneluk, Robert G. ;
Holcik, Martin .
RNA, 2006, 12 (10) :1755-1785
[3]   Identification of a mutation that perturbs NF1 gene splicing using genomic DNA samples and a minigene assay [J].
Baralle, M ;
Baralle, D ;
De Conti, L ;
Mattocks, C ;
Whittaker, J ;
Knezevich, A ;
Ffrench-Constant, C ;
Baralle, FE .
JOURNAL OF MEDICAL GENETICS, 2003, 40 (03) :220-222
[4]   A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements [J].
Baraniak, AP ;
Lasda, EL ;
Wagner, EJ ;
Garcia-Blanco, MA .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (24) :9327-9337
[5]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[6]   Influence of RNA secondary structure on the pre-mRNA splicing process [J].
Buratti, E ;
Baralle, FE .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (24) :10505-10514
[7]   RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA dxon [J].
Buratti, E ;
Muro, AF ;
Giombi, M ;
Gherbassi, D ;
Iaconcig, A ;
Baralle, FE .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (03) :1387-1400
[8]   Defective splicing, disease and therapy: searching for master checkpoints in exon definition [J].
Buratti, Emanuele ;
Baralle, Marco ;
Baralle, Francisco E. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (12) :3494-3510
[9]   SpliceDB: database of canonical and non-canonical mammalian splice sites [J].
Burset, M ;
Seledtsov, IA ;
Solovyev, VV .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :255-259
[10]   Alternative splicing:: multiple control mechanisms and involvement in human disease [J].
Cáceres, JF ;
Kornblihtt, AR .
TRENDS IN GENETICS, 2002, 18 (04) :186-193