Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases

被引:332
作者
Smolka, Marcus B.
Albuquerque, Claudio P.
Chen, Sheng-Hong
Zhou, Huilin [1 ]
机构
[1] Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
关键词
mass spectrometry; Mec1; N-isotag; phosphorylation; Rad53;
D O I
10.1073/pnas.0701622104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the role of DNA damage checkpoint kinases in the cellular response to genotoxic stress requires the knowledge of their substrates. Here, we report the use of quantitative phosphoproteomics to identify in vivo kinase substrates of the yeast DNA damage checkpoint kinases Mec1, Tel1, and Rad53 (orthologs of human ATR, ATM, and CHK2, respectively). By analyzing 2,689 phosphorylation sites in wild-type and various kinase-null cells, 62 phosphorylation sites from 55 proteins were found to be controlled by the DNA damage checkpoint. Examination of the dependency of each phosphorylation on Mec1 and Tel1 or Rad53, combined with sequence and biochemical analysis, revealed that many of the identified targets are likely direct substrates of these kinases. In addition to several known targets, 50 previously undescribed targets of the DNA damage checkpoint were identified, suggesting that a wide range of cellular processes is likely regulated by Mec1, Tel1, and Rad53.
引用
收藏
页码:10364 / 10369
页数:6
相关论文
共 45 条
[1]   Proteomic analysis of nucleoporin interacting proteins [J].
Allen, NPC ;
Huang, L ;
Burlingame, A ;
Rexach, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29268-29274
[2]   Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase [J].
Bashkirov, VI ;
Bashkirova, EV ;
Haghnazari, E ;
Heyer, WD .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1441-1452
[3]   DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints [J].
Bashkirov, VI ;
King, JS ;
Bashkirova, EV ;
Schmuckli-Maurer, J ;
Heyer, WD .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (12) :4393-4404
[4]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[5]   The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast [J].
Brush, GS ;
Morrow, DM ;
Hieter, P ;
Kelly, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15075-15080
[6]   Budding yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosis [J].
Cartagena-Lirola, Hugo ;
Guerini, Ilaria ;
Viscardi, Valeria ;
Lucchini, Giovanna ;
Longhese, Maria Pia .
CELL CYCLE, 2006, 5 (14) :1549-1559
[7]   Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae [J].
Chen, Sheng-hong ;
Smolka, Marcus B. ;
Zhou, Huilin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :986-995
[8]   The yeast Xrs2 complex functions in S phase checkpoint regulation [J].
D'Amours, D ;
Jackson, SP .
GENES & DEVELOPMENT, 2001, 15 (17) :2238-2249
[9]   A role for Saccharomyces cerevisiae histone H2A in DNA repair [J].
Downs, JA ;
Lowndes, NF ;
Jackson, SP .
NATURE, 2000, 408 (6815) :1001-1004
[10]   2 GENES DIFFERENTIALLY REGULATED IN THE CELL-CYCLE AND BY DNA-DAMAGING AGENTS ENCODE ALTERNATIVE REGULATORY SUBUNITS OF RIBONUCLEOTIDE REDUCTASE [J].
ELLEDGE, SJ ;
DAVIS, RW .
GENES & DEVELOPMENT, 1990, 4 (05) :740-751