Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation

被引:55
作者
Holst, D
Luquet, S
Kristiansen, K
Grimaldi, PA
机构
[1] Univ Nice, INSERM, U470, Ctr Biochim, F-06108 Nice 02, France
[2] Univ So Denmark, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark
关键词
myoblasts; PPAR delta; MyoD1; fatty acid; adipogenesis;
D O I
10.1016/S0014-4827(03)00179-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Dietary long chain fatty acids and thiazolidinediones act as potent activators of adipogenesis in established preadipose cell lines. High concentrations of thiazolidinediones have also been shown to induce terminal differentiation of non-preadipose cells, such as fibroblasts and myoblasts, into adipose-like cells. This transdifferentiation was observed in both rodent and human myoblasts. In this report, we show that PPARdelta mediates some of the effects exerted by long chain fatty acids on myogenesis and adipogenesis. Activation of PPARdelta by long chain fatty acids impairs the expression of the determination factor MyoD1 and alpha-actin, abolishes the development of multinucleated myotubes, and in parallel induces the expression of PPARgamma gene, a master regulator of adipogenesis. Ectopic expression of PPARdelta in C2C12 myoblasts potentiated the fatty acid-induced expression of adipogenic markers, while expression of a dominant negative PPARdelta mutant exerted opposite effects. Furthermore, a sequential activation of first PPARdelta with long chain fatty acids and then PPARgamma with thiazolidinediones is required for adipogenesis in C2C12 myoblasts. This study demonstrates that PPARdelta, at least in part, is responsible for the dual effects of long chain fatty acids as inhibitors of myogenesis and inducers of transdifferentiation into preadipose-like cells. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:168 / 176
页数:9
相关论文
共 39 条
[1]   CELLULAR AND MOLECULAR ASPECTS OF ADIPOSE-TISSUE DEVELOPMENT [J].
AILHAUD, G ;
GRIMALDI, P ;
NEGREL, R .
ANNUAL REVIEW OF NUTRITION, 1992, 12 :207-233
[2]   PPAR gamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A [J].
Altiok, S ;
Xu, M ;
Spiegelman, BM .
GENES & DEVELOPMENT, 1997, 11 (15) :1987-1998
[3]   CLONING OF A PROTEIN THAT MEDIATES TRANSCRIPTIONAL EFFECTS OF FATTY-ACIDS IN PREADIPOCYTES - HOMOLOGY TO PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS [J].
AMRI, EZ ;
BONINO, F ;
AILHAUD, G ;
ABUMRAD, NA ;
GRIMALDI, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (05) :2367-2371
[4]   ADIPOSE CELL-DIFFERENTIATION - EVIDENCE FOR A 2-STEP PROCESS IN THE POLYAMINE-DEPENDENT OB1754 CLONAL LINE [J].
AMRI, EZ ;
DANI, C ;
DOGLIO, A ;
ETIENNE, J ;
GRIMALDI, P ;
AILHAUD, G .
BIOCHEMICAL JOURNAL, 1986, 238 (01) :115-122
[5]   Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans - No alteration in adipose tissue of obese and NIDDM patients [J].
Auboeuf, D ;
Rieusset, J ;
Fajas, L ;
Vallier, P ;
Frering, V ;
Riou, JP ;
Staels, P ;
Auwerx, J ;
Laville, M ;
Vidal, H .
DIABETES, 1997, 46 (08) :1319-1327
[6]   Expression of peroxisome proliferator-activated receptor PPARδ promotes induction of PPARγ and adipocyte differentiation in 3T3C2 fibroblasts [J].
Bastie, C ;
Holst, D ;
Gaillard, D ;
Jehl-Pietri, C ;
Grimaldi, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21920-21925
[7]   Alterations of peroxisome proliferator-activated receptor δ activity affect fatty acid-controlled adipose differentiation [J].
Bastie, C ;
Luquet, S ;
Holst, D ;
Jehl-Pietri, C ;
Grimaldi, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38768-38773
[8]   PLASTICITY OF THE DIFFERENTIATED STATE [J].
BLAU, HM ;
PAVLATH, GK ;
HARDEMAN, EC ;
CHIU, CP ;
SILBERSTEIN, L ;
WEBSTER, SG ;
MILLER, SC ;
WEBSTER, C .
SCIENCE, 1985, 230 (4727) :758-766
[9]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[10]   Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway [J].
Di-Poï, N ;
Tan, NS ;
Michalik, L ;
Wahli, W ;
Desvergne, B .
MOLECULAR CELL, 2002, 10 (04) :721-733