Comparative study of some fiber-optic remote Raman probe designs .2. Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes

被引:47
作者
Cooney, TF
Skinner, HT
Angel, SM
机构
[1] UNIV S CAROLINA,DEPT CHEM & BIOCHEM,COLUMBIA,SC 29208
[2] UNIV HAWAII,SCH OCEAN & EARTH SCI & TECHNOL,HAWAII INST GEOPHYS & PLANETOL,HONOLULU,HI 96822
关键词
Raman spectroscopy; remote sensing; fiber-optic sensors;
D O I
10.1366/0003702963905574
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We compare relative performances of flat-tipped, beveled (two-fiber and six-around-one), and single-lensed focused fiber-optic Raman probes and, where feasible, evaluate the utility of optical filters for reducing fiber background. The sensitivity profile of each probe is determined by measuring the relative intensity of light backscattered off a flat surface as a function of distance from the probe tip. The experimental results are compared with a simple light-cone-overlap model incorporating fiber numerical aperture, fiber and immersion medium refractive indices, separation between excitation and collection fibers, number of fibers, and fiber bevel angle and/or lens focal length. The model and sensitivity profiles are used to interpret the sampling regions for Raman spectra obtained by using each of the probes with a clear, transparent sample (single-crystal sparry calcite), a white, partially transparent sample (acetaminophen tablet), and a set of organic liquids of varying refractive index, The sensitivity of the tested commercial lensed probe drops off symmetrically about the focal point. For both solid samples, the intensity of fiber background follows a profile determined primarily by laser backscattering off the surface, whereas the sample Raman signal follows a profile dependent upon sampling depth.
引用
收藏
页码:849 / 860
页数:12
相关论文
共 8 条
[1]  
CARRABBA MM, 1992, Patent No. 5112127
[2]   Comparative study of some fiber-optic remote Raman probe designs .1. Model for liquids and transparent solids [J].
Cooney, TF ;
Skinner, HT ;
Angel, SM .
APPLIED SPECTROSCOPY, 1996, 50 (07) :836-848
[3]   USE OF OPTICAL FIBERS IN RAMAN-SPECTROSCOPY [J].
HENDRA, PJ ;
ELLIS, G ;
CUTLER, DJ .
JOURNAL OF RAMAN SPECTROSCOPY, 1988, 19 (06) :413-418
[4]   ELIMINATION OF BACKGROUND IN FIBEROPTIC RAMAN MEASUREMENTS [J].
MYRICK, ML ;
ANGEL, SM .
APPLIED SPECTROSCOPY, 1990, 44 (04) :565-570
[5]   COMPARISON OF SOME FIBER OPTIC CONFIGURATIONS FOR MEASUREMENT OF LUMINESCENCE AND RAMAN-SCATTERING [J].
MYRICK, ML ;
ANGEL, SM ;
DESIDERIO, R .
APPLIED OPTICS, 1990, 29 (09) :1333-1344
[6]  
WALFRAFEN GE, 1975, APPL SPECTROSC, V29, P337
[7]   OPTICALLY-ACTIVE VIBRATIONS AND ELASTIC-CONSTANTS OF CALCITE AND ARAGONITE [J].
YAMAMOTO, A ;
SHIRO, Y ;
MURATA, H .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1974, 47 (02) :265-273
[8]  
Young J.D., 1994, PRECARIOUS BALANCE H, P131