DNA repair mechanism by photolyase:: Electron transfer path from the photolyase catalytic cofactor FADH- to DNA thymine dimer

被引:57
作者
Medvedev, D [1 ]
Stuchebrukhov, AA [1 ]
机构
[1] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
关键词
D O I
10.1006/jtbi.2001.2291
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photolyase is an enzyme that catalyses photorepair of thymine dimers in UV damaged DNA by electron transfer reaction. The structure of the photolyase/DNA complex is unknown at present. Using crystal structure coordinates of the substrate-free enzyme from E. coli, we have recently built a computer molecular model of a thymine dimer docked to photolyase catalytic site and studied molecular dynamics of the system. In this paper, we present analysis of the electronic coupling and electron transfer pathway between the catalytic cofactor FADH(-) and the pyrimidine dimer by the method of interatomic tunneling currents. Electronic structure is treated in the extended Huckel approximation. The root mean square transfer matrix element is about 6 cm(-1), which is consistent with the experimentally determined rate of transfer. We find that electron transfer mechanism responsible for the repair utilizes an unusual folded conformation of FADH- in photolyases, in which the isoalloxazine ring of the flavin and the adenine are in close proximity, and the peculiar features of the docked orientation of the dimer. The tunneling currents show explicitly that despite of the close proximity between the donor and acceptor complexes, the electron transfer mechanism between the flavin and the thymine bases is not direct, but indirect, with the adenine acting as an intermediate. These calculations confirm the previously made conclusion based on an indirect evidence for such mechanism. (C) 2001 Academic Press.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 49 条
[1]   Theoretical study of electron transfer between the photolyase catalytic cofactor FADH- and DNA thymine dimer [J].
Antony, J ;
Medvedev, DM ;
Stuchebrukhov, AA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (06) :1057-1065
[2]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[3]  
BERG BJV, 1998, J BIOL CHEM, V273, P20276
[4]  
CASE DA, 1997, AMBER, V5
[5]   Pathways of electron transfer in Escherichia coli DNA photolyase:: Trp306 to FADH [J].
Cheung, MS ;
Daizadeh, I ;
Stuchebrukhov, AA ;
Heelis, PF .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1241-1249
[6]   APPLICATION OF RESP CHARGES TO CALCULATE CONFORMATIONAL ENERGIES, HYDROGEN-BOND ENERGIES, AND FREE-ENERGIES OF SOLVATION [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9620-9631
[7]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[8]   Calculation of electronic tunneling matrix element in proteins: Comparison of exact and approximate one-electron methods for Ru-modified azurin [J].
Daizadeh, I ;
Gehlen, JN ;
Stuchebrukhov, AA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (13) :5658-5666
[9]  
FRIEDBERG EC, 1995, DNA REPAIR MUTAGENES
[10]  
Frisch M.J., 1995, GAUSSIAN 94 REVISION