Cyclic voltammetry study of ice formation in the PEFC catalyst layer during cold start

被引:63
作者
Ge, Shanhai
Wang, Chao-Yang [1 ]
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
D O I
10.1149/1.2784166
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
electrochemically active Pt area during and post-subzero startup of a polymer electrolyte fuel cell (PEFC). It was found that the Pt area decreases after each cold start and the Pt area loss increases with the product water generated during cold start. We hypothesize that the Pt area loss is caused by ice precipitated between Pt particles and ionomers during cold start. After startup from a subzero temperature and warmup to 25 degrees C with all ice in the CL melted, the cell remains subject to Pt area loss, but this loss at 25 degrees C is substantially reduced. We also find that subsequent cell operation at 70 degrees C and 1 A/cm(2) for 2 h is very effective for recovering the active Pt area and cell performance. Both permanent loss in the active Pt area and cell performance degradation due to structural alteration of the cathode CL by the presence of ice increase gradually with the cold-start cycle number and become more severe for cold start from -30 degrees C than from -10 and -20 degrees C. In addition, startup from a subzero temperature appears to have no influence on the electrochemically active Pt area of the anode CL. It is suggested that the ice amount present in the CL holds a key to determine the temporary Pt area loss due to ice formation as well as permanent performance degradation resulting from cold-start cycling. (c) 2007 The Electrochemical Society.
引用
收藏
页码:B1399 / B1406
页数:8
相关论文
共 22 条
[1]   CONDUCTANCE OF NAFION-117 MEMBRANES AS A FUNCTION OF TEMPERATURE AND WATER-CONTENT [J].
CAPPADONIA, M ;
ERNING, JW ;
NIAKI, SMS ;
STIMMING, U .
SOLID STATE IONICS, 1995, 77 :65-69
[2]   PROTON CONDUCTION OF NAFION((R))-117 MEMBRANE BETWEEN 140 K AND ROOM-TEMPERATURE [J].
CAPPADONIA, M ;
ERNING, JW ;
STIMMING, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 376 (1-2) :189-193
[3]   Effects of water removal on the performance degradation of PEMFCs repetitively brought to <0°C [J].
Cho, EA ;
Ko, JJ ;
Ha, HY ;
Hong, SA ;
Lee, KY ;
Lim, TW ;
Oh, IH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A661-A665
[4]   Characteristics of the PEMFC repetitively brought to temperatures below 0°C [J].
Cho, EA ;
Ko, JJ ;
Ha, HY ;
Hong, SA ;
Lee, KY ;
Lim, TW ;
Oh, IH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1667-A1670
[5]   Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell [J].
Ge, Shanhai ;
Wang, Chao-Yang .
ELECTROCHIMICA ACTA, 2007, 52 (14) :4825-4835
[6]   In situ Imaging of liquid water and ice formation in an operating PEFC during cold start [J].
Ge, Shanhai ;
Wang, Chao-Yang .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) :A499-A503
[7]   Effect of freeze-thaw cycles on the properties and performance of membrane-electrode assemblies [J].
Guo, Qunhui ;
Qi, Zhigang .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :1269-1274
[8]   The design and performance of a PEFC at a temperature below freezing [J].
Hishinuma, Y ;
Chikahisa, T ;
Kagami, F ;
Ogawa, T .
JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2004, 47 (02) :235-241
[9]  
JIANG FM, IN PRESS ELECTROCHIM
[10]  
KAGAMI F, 2002, THERM SCI ENG, V10, P25