The mass-temperature relation for clusters of galaxies

被引:36
作者
Hjorth, J
Oukbir, J
van Kampen, E
机构
[1] NORDITA, DK-2100 Copenhagen O, Denmark
[2] Ctr Adv Study, N-0271 Oslo, Norway
[3] Danish Space Res Inst, DK-2100 Copenhagen O, Denmark
[4] Theoret Astrophys Ctr, DK-2100 Copenhagen O, Denmark
关键词
celestial mechanics; stellar dynamics; galaxies : clusters : general; cosmology : observations; cosmology : theory; dark matter; gravitational lensing;
D O I
10.1046/j.1365-8711.1998.01780.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global temperatures measured with ASCA and masses inferred from weak and strong gravitational lensing. The surface lensing masses are deprojected in accordance with N-body simulations and analytic results. The data are well-fitted by the mass-temperature relation and are consistent with the empirical normalization found by Evrard et al. (1996) using gas-dynamic simulations. Thus, there is no discrepancy between lensing and X-ray-derived masses using this approach. The dispersion around the relation is 27 per cent, entirely dominated by observational errors. The next generation of X-ray telescopes combined with wide-held HST imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation, resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In addition, as M(r)/r las derived from lensing) is dependent on the cosmological model at high redshift, the relation represents a new tool for determination of cosmological parameters, notably the cosmological constant Lambda.
引用
收藏
页码:L1 / L5
页数:5
相关论文
共 44 条
[1]   Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies [J].
Allen, SW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 296 (02) :392-406
[2]   Hierarchical numerical cosmology with hydrodynamics: Resolving X-ray clusters [J].
Anninos, P ;
Norman, ML .
ASTROPHYSICAL JOURNAL, 1996, 459 (01) :12-26
[3]   Constraining Omega with cluster evolution [J].
Bahcall, NA ;
Fan, XH ;
Cen, RY .
ASTROPHYSICAL JOURNAL, 1997, 485 (02) :L53-L56
[4]  
Bartelmann M, 1998, ASTRON ASTROPHYS, V330, P1
[5]   Weak gravitational lensing by galaxies [J].
Brainerd, TG ;
Blandford, RD ;
Smail, I .
ASTROPHYSICAL JOURNAL, 1996, 466 (02) :623-637
[6]   MAPPING CLUSTER MASS DISTRIBUTIONS VIA GRAVITATIONAL LENSING OF BACKGROUND GALAXIES [J].
BROADHURST, TJ ;
TAYLOR, AN ;
PEACOCK, JA .
ASTROPHYSICAL JOURNAL, 1995, 438 (01) :49-61
[7]   The average mass profile of galaxy clusters [J].
Carlberg, RG ;
Yee, HKC ;
Ellingson, E ;
Morris, SL ;
Abraham, R ;
Gravel, P ;
Pritchet, CJ ;
SmeckerHane, T ;
Hartwick, FDA ;
Hesser, JE ;
Hutchings, JB ;
Oke, JB .
ASTROPHYSICAL JOURNAL, 1997, 485 (01) :L13-L16
[8]   The structure of dark matter haloes in hierarchical clustering models [J].
Cole, S ;
Lacey, C .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 281 (02) :716-736
[9]  
DETHEIJE P, 1998, UNPUB MNRAS
[10]   Cluster evolution as a diagnostic for Omega [J].
Eke, VR ;
Cole, S ;
Frenk, CS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 282 (01) :263-280