Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat

被引:52
作者
Dyer, JK
Bourque, JA
Steeves, JD
机构
[1] Univ British Columbia, Dept Zool, Collaborat Repair Discoveries, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Anat, Collaborat Repair Discoveries, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Surg, Collaborat Repair Discoveries, Vancouver, BC V6T 1Z4, Canada
基金
英国医学研究理事会;
关键词
spinal cord; galactocerebroside; serum complement; red nucleus; rubrospinal;
D O I
10.1006/exnr.1998.6905
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We previously observed that the transient developmental suppression of myelination or disruption of mature myelin, by local intraspinal infusion of serum complement proteins along with a complement-fixing, myelin-specific antibody (e.g., anti-Galactocerebroside), facilitated avian brainstem-spinal axonal regeneration after spinal transection. We now report the effects of similar immunological protocols on axonal regeneration in the injured adult rat spinal cord. After a lateral hemisection injury of the T10 spinal cord, infusion of the above reagents, over 14 days at T11, facilitated the regeneration of some brainstem-spinal axons, The hemisection lesion enabled comparisons between the retrograde labeling within an injured brainstem-spinal nucleus and the uninjured contralateral homologue. The brainstem-spinal nucleus examined in detail was the red nucleus (RN), chosen for its relatively compact descending pathway within the dorsolateral cord. Comparing the number of labeled neurons within each RN, of an experimentally myelin suppressed animal, indicated that approximately 32% of injured rubrospinal projections had regenerated into the caudal lumbar cord. In contrast, control-treated animals (e.g., PBS vehicle alone, GalC antibody alone, or serum complement alone) showed little or no axonal regeneration. We also examined the ultrastructural appearance of the treated cords. We noted demyelination over 1-2 segments surrounding the infusion site (T11) and a further two segments of myelin disruption (delamination) on either side of the demyelinated zone. The demyelination is an active process (<3 days) with microglia and/or macrophages engulfing myelin. Thus, the facilitation of axonal regeneration through the transient suppression of CNS myelin may be fundamental to all higher vertebrates. (C) 1998 Academic Press.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 60 条
[1]  
[Anonymous], NEUROANATOMICAL TRAC
[2]   SUPRASPINAL CONTRIBUTIONS TO THE INITIATION AND CONTROL OF LOCOMOTION IN THE CAT [J].
ARMSTRONG, DM .
PROGRESS IN NEUROBIOLOGY, 1986, 26 (04) :273-361
[3]  
BRANDTLOW CE, 1991, SOC NEUR ABSTR, V17, P1495
[4]   RECOVERY FROM SPINAL-CORD INJURY MEDIATED BY ANTIBODIES TO NEURITE GROWTH-INHIBITORS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
SCHNELL, L ;
DAI, HN ;
GAO, D ;
SCHWAB, ME .
NATURE, 1995, 378 (6556) :498-501
[5]   RECOVERY OF FUNCTION AFTER SPINAL-CORD INJURY - MECHANISMS UNDERLYING TRANSPLANT-MEDIATED RECOVERY OF FUNCTION DIFFER AFTER SPINAL-CORD INJURY IN NEWBORN AND ADULT-RATS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
REIER, PJ ;
DAI, HN ;
MCATEE, M ;
GAO, D .
EXPERIMENTAL NEUROLOGY, 1993, 123 (01) :3-16
[6]   RUBROSPINAL PROJECTIONS IN RAT [J].
BROWN, LT .
JOURNAL OF COMPARATIVE NEUROLOGY, 1974, 154 (02) :169-187
[7]   ANTIBODY AGAINST MYELIN-ASSOCIATED INHIBITOR OF NEURITE GROWTH NEUTRALIZES NONPERMISSIVE SUBSTRATE PROPERTIES OF CNS WHITE MATTER [J].
CARONI, P ;
SCHWAB, ME .
NEURON, 1988, 1 (01) :85-96
[8]   2 MEMBRANE-PROTEIN FRACTIONS FROM RAT CENTRAL MYELIN WITH INHIBITORY PROPERTIES FOR NEURITE GROWTH AND FIBROBLAST SPREADING [J].
CARONI, P ;
SCHWAB, ME .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1281-1288
[9]   Spinal cord repair in adult paraplegic rats: Partial restoration of hind limb function [J].
Cheng, H ;
Cao, YH ;
Olson, L .
SCIENCE, 1996, 273 (5274) :510-513