Metals and amyloid-β in Alzheimer's disease

被引:299
作者
Maynard, CJ
Bush, AI
Masters, CL
Cappai, R
Li, QX [1 ]
机构
[1] Univ Melbourne, Dept Pathol, Parkville, Vic 3010, Australia
[2] Mental Hlth Res Inst Victoria, Parkville, Vic, Australia
[3] Massachusetts Gen Hosp, Lab Oxidat Biol, Genet & Ageing Res Unit, Charlestown, MA USA
[4] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Psychiat, Charlestown, MA USA
关键词
Alzheimer's disease; amyloid-beta peptide; amyloid precursor protein; metal homeostasis; copper; zinc; brain; transgenic mice;
D O I
10.1111/j.0959-9673.2005.00434.x
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Mounting evidence is demonstrating roles for the amyloid precursor protein (APP) and its proteolytic product A beta in metal homeostasis. Furthermore, aberrant metal homeostasis is observed in patients with Alzheimer's disease (AD), and this may contribute to AD pathogenesis, by enhancing the formation of reactive oxygen species and toxic A beta oligomers and facilitating the formation of the hallmark amyloid deposits in AD brain. Indeed, zinc released from synaptic activity has been shown to induce parenchymal and cerebrovascular amyloid in transgenic mice. On the other hand, abnormal metabolism of APP and A beta may impair brain metal homeostasis as part of the AD pathogenic process. A beta and APP expression have both been shown to decrease brain copper (Cu) levels, whereas increasing brain Cu availability results in decreased levels of A beta and amyloid plaque formation in transgenic mice. Lowering Cu concentrations can downregulate the transcription of APP, strengthening the hypothesis that APP and A beta form part of the Cu homeostatic machinery in the brain. This is a complex pathway, and it appears that when the sensitive metal balance in the brain is sufficiently disrupted, it can lead to the self-perpetuating pathogenesis of AD. Clinical trials are currently studying agents that can remedy abnormal A beta-metal interactions.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 148 条
[1]   The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease [J].
Aksenov, MY ;
Tucker, HM ;
Nair, P ;
Aksenova, MV ;
Butterfield, DA ;
Estus, S ;
Markesbery, WR .
JOURNAL OF MOLECULAR NEUROSCIENCE, 1998, 11 (02) :151-164
[2]  
Aschner M., 1997, METALS OXIDATIVE DAM, P77
[3]   Amyloid-β:: a chameleon walking in two worlds:: a review of the trophic and toxic properties of amyloid-β [J].
Atwood, CS ;
Obrenovich, ME ;
Liu, TB ;
Chan, H ;
Perry, G ;
Smith, MA ;
Martins, RN .
BRAIN RESEARCH REVIEWS, 2003, 43 (01) :1-16
[4]  
Atwood CS, 2000, CELL MOL BIOL, V46, P777
[5]   Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis [J].
Atwood, CS ;
Moir, RD ;
Huang, XD ;
Scarpa, RC ;
Bacarra, NME ;
Romano, DM ;
Hartshorn, MK ;
Tanzi, RE ;
Bush, AI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12817-12826
[6]   Characterization of copper interactions with Alzheimer amyloid β peptides:: Identification of an attomolar-affinity copper binding site on amyloid β1-42 [J].
Atwood, CS ;
Scarpa, RC ;
Huang, XD ;
Moir, RD ;
Jones, WD ;
Fairlie, DP ;
Tanzi, RE ;
Bush, AI .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (03) :1219-1233
[7]   Copper mediates dityrosine cross-linking of Alzheimer's amyloid-β [J].
Atwood, CS ;
Perry, G ;
Zeng, H ;
Kato, Y ;
Jones, WD ;
Ling, KQ ;
Huang, XD ;
Moir, RD ;
Wang, DD ;
Sayre, LM ;
Smith, MA ;
Chen, SG ;
Bush, AI .
BIOCHEMISTRY, 2004, 43 (02) :560-568
[8]  
Atwood CS, 1999, MET IONS BIOL SYST, V36, P309
[9]   Structure of the Alzheimer's disease amyloid precursor protein copper binding domain - A regulator of neuronal copper homeostasis [J].
Barnham, KJ ;
McKinstry, WJ ;
Multhaup, G ;
Galatis, D ;
Morton, CJ ;
Curtain, CC ;
Williamson, NA ;
White, AR ;
Hinds, MG ;
Norton, RS ;
Beyreuther, K ;
Masters, CL ;
Parker, MW ;
Cappai, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) :17401-17407
[10]   Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β-amyloid [J].
Barnham, KJ ;
Haeffner, F ;
Ciccotosto, GD ;
Curtain, CC ;
Tew, D ;
Mavros, C ;
Beyreuther, K ;
Carrington, D ;
Masters, CL ;
Cherny, RA ;
Cappai, R ;
Bush, AI .
FASEB JOURNAL, 2004, 18 (10) :1427-+