Phosphorylation of LKB1 at serine 428 by protein kinase C-ζ is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells

被引:241
作者
Xie, Zhonglin [1 ]
Dong, Yunzhou [1 ,2 ]
Scholz, Roland
Neumann, Dietbert
Zou, Ming-Hui [1 ,2 ]
机构
[1] Univ Oklahoma, Hlth Sci Ctr, Dept Med, Div Endocrinol & Diabet, Oklahoma City, OK 73104 USA
[2] Swiss Fed Inst Technol, Inst Cell Biol, Zurich, Switzerland
关键词
diabetes mellitus; endothelium; metabolism; molecular biology;
D O I
10.1161/CIRCULATIONAHA.107.744490
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Metformin, one of most commonly used antidiabetes drugs, is reported to exert its therapeutic effects by activating AMP-activated protein kinase (AMPK); however, the mechanism by which metformin activates AMPK is poorly defined. The objective of the present study was to determine how metformin activates AMPK in endothelial cells. Methods and Results-Exposure of human umbilical vein endothelial cells or bovine aortic endothelial cells to metformin significantly increased AMPK activity and the phosphorylation of both AMPK at Thr172 and LKB1 at Ser428, an AMPK kinase, which was paralleled by increased activation of protein kinase C (PKC)-zeta, as evidenced by increased activity, phosphorylation (Thr410/403), and nuclear translocation of PKC-zeta. Consistently, either pharmacological or genetic inhibition of PKC-zeta ablated metformin-enhanced phosphorylation of both AMPK-Thr172 and LKB1-Ser428, suggesting that PKC-zeta might act as an upstream kinase for LKB1. Furthermore, adenoviral overexpression of LKB1 kinase-dead mutants abolished but LKB1 wild-type overexpression enhanced the effects of metformin on AMPK in bovine aortic endothelial cells. In addition, metformin increased the phosphorylation and nuclear export of LKB1 into the cytosols as well as the association of AMPK with LKB1 in bovine aortic endothelial cells. Similarly, overexpression of LKB1 wild-type but not LKB1 S428A mutants (serine replaced by alanine) restored the effects of metformin on AMPK in LKB1-deficient HeLa-S3 cells, suggesting that Ser428 phosphorylation of LKB1 is required for metformin-enhanced AMPK activation. Moreover, LKB1 S428A, like kinase-dead LKB1 D194A, abolished metformin-enhanced LKB1 translocation as well as the association of LKB1 with AMPK in HeLa-S3 cells. Finally, inhibition of PKC-zeta abolished metformin-enhanced coimmunoprecipitation of LKB1 with both AMPK alpha 1 and AMPK alpha 2. Conclusions-We conclude that PKC-zeta phosphorylates LKB1 at Ser428, resulting in LKB1 nuclear export and hence AMPK activation.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 53 条
[1]   Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus [J].
Abbasi, F ;
Chu, JW ;
McLaughlin, T ;
Lamendola, C ;
Leary, ET ;
Reaven, GM .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2004, 53 (02) :159-164
[2]   Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis [J].
Atkinson, LL ;
Fischer, MA ;
Lopaschuk, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29424-29430
[3]   Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD [J].
Baas, AF ;
Boudeau, J ;
Sapkota, GP ;
Smit, L ;
Medema, R ;
Morrice, NA ;
Alessi, DR ;
Clevers, HC .
EMBO JOURNAL, 2003, 22 (12) :3062-3072
[4]   Vascular effects of metformin - Possible mechanisms for its antihypertensive action in the spontaneously hypertensive rat [J].
Bhalla, RC ;
Toth, KF ;
Tan, EQ ;
Bhatty, RA ;
Mathias, E ;
Sharma, RV .
AMERICAN JOURNAL OF HYPERTENSION, 1996, 9 (06) :570-576
[5]   MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm [J].
Boudeau, J ;
Baas, AF ;
Deak, M ;
Morrice, NA ;
Kieloch, A ;
Schutkowski, M ;
Prescott, AR ;
Clevers, HC ;
Alessi, DR .
EMBO JOURNAL, 2003, 22 (19) :5102-5114
[6]   Activation of the ERK pathway and atypical protein kinase C Isoforms in exercise- and aminoimidazole-4-carboxamide-1-β-D-riboside (AICAR)-stimulated glucose transport [J].
Chen, HC ;
Bandyopadhyay, G ;
Sajan, MP ;
Kanoh, Y ;
Standaert, M ;
Farese, RV ;
Farese, RV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (26) :23554-23562
[7]   Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase [J].
Davis, BJ ;
Xie, ZL ;
Viollet, B ;
Zou, MH .
DIABETES, 2006, 55 (02) :496-505
[8]   Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I [J].
El-Mir, MY ;
Nogueira, V ;
Fontaine, E ;
Avéret, N ;
Rigoulet, M ;
Leverve, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :223-228
[9]   Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity [J].
Forcet, C ;
Etienne-Manneville, S ;
Gaude, H ;
Fournier, L ;
Debilly, S ;
Salmi, M ;
Baas, A ;
Olschwang, S ;
Clevers, H ;
Billaud, M .
HUMAN MOLECULAR GENETICS, 2005, 14 (10) :1283-1292
[10]   The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways [J].
Fryer, LGD ;
Parbu-Patel, A ;
Carling, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25226-25232