Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials

被引:608
作者
Park, Cheol-Hwan [1 ,2 ]
Yang, Li [1 ,2 ]
Son, Young-Woo [3 ]
Cohen, Marvin L. [1 ,2 ]
Louie, Steven G. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Konkuk Univ, Dept Phys, Seoul 143701, South Korea
关键词
D O I
10.1038/nphys890
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene's conical valence and conduction bands give rise to charge carriers that have neutrino-like linear energy dispersion and exhibit chiral behaviour near the Dirac points where these bands meet(1-6). Such characteristics offer exciting opportunities for the occurrence of new phenomena and the development of high performance electronic devices. Making high quality devices from graphene, which typically involves etching it into nanoscale structures(7-10), however, has proven challenging. Here we show that a periodic potential applied by suitably patterned modifications or contacts on graphene's surface leads to further unexpected and potentially useful charge carrier behaviour. Owing to their chiral nature, the propagation of charge carriers through such a graphene superlattice is highly anisotropic, and in extreme cases results in group velocities that are reduced to zero in one direction but are unchanged in another. Moreover, we show that the density and type of carrier species ( electron, hole or open orbit) in a graphene superlattice are extremely sensitive to the potential applied, and they may further be tuned by varying the Fermi level. As well as addressing fundamental questions about how the chiral massless Dirac fermions of graphene propagate in a periodic potential, our results suggest the possibility of building graphene electronic circuits from appropriately engineered periodic surface patterns, without the need for cutting or etching.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 30 条
[1]   Impurity scattering in carbon nanotubes - Absence of back scattering [J].
Ando, T ;
Nakanishi, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) :1704-1713
[2]   Berry's phase and absence of back scattering in carbon nanotubes [J].
Ando, T ;
Nakanishi, T ;
Saito, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2857-2862
[3]   Klein paradox and resonant tunneling in a graphene superlattice [J].
Bai, Chunxu ;
Zhang, Xiangdong .
PHYSICAL REVIEW B, 2007, 76 (07)
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]  
CHEN Z, 2007, GRAPHENE NANORIBBON
[6]  
COTTAM MG, 1989, INTRO SURFACE SUPERL
[7]   CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
SCIENCE, 1993, 262 (5131) :218-220
[8]   SELF-CONSISTENT EFFECTIVE-MASS THEORY FOR INTRALAYER SCREENING IN GRAPHITE-INTERCALATION COMPOUNDS [J].
DIVINCENZO, DP ;
MELE, EJ .
PHYSICAL REVIEW B, 1984, 29 (04) :1685-1694
[9]   POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
SCHWEIZER, EK .
NATURE, 1990, 344 (6266) :524-526
[10]   SUPERLATTICE AND NEGATIVE DIFFERENTIAL CONDUCTIVITY IN SEMICONDUCTORS [J].
ESAKI, L ;
TSU, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) :61-&