How force might activate talin's vinculin binding sites:: SMD reveals a structural mechanism

被引:139
作者
Hytoenen, Vesa P. [1 ]
Vogel, Viola [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Lab Biol Oriented Mat, Dept Mat, Zurich, Switzerland
关键词
D O I
10.1371/journal.pcbi.0040024
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486 - 889 constituting helices H1 - H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1 H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated alpha-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds.
引用
收藏
页数:15
相关论文
共 58 条
[1]   Structural basis for vinculin activation at sites of cell adhesion [J].
Bakolitsa, C ;
Cohen, DM ;
Bankston, LA ;
Bobkov, AA ;
Cadwell, GW ;
Jennings, L ;
Critchley, DR ;
Craig, SW ;
Liddington, RC .
NATURE, 2004, 430 (6999) :583-586
[2]   Reconstructing potential energy functions from simulated force-induced unbinding processes [J].
Balsera, M ;
Stepaniants, S ;
Izrailev, S ;
Oono, Y ;
Schulten, K .
BIOPHYSICAL JOURNAL, 1997, 73 (03) :1281-1287
[3]   Phosphatidylinositol phosphate kinase type 1γ and β1-Integrin cytoplasmic domain bind to the same region in the talin FERM domain [J].
Barsukov, IL ;
Prescot, A ;
Bate, N ;
Patel, B ;
Floyd, DN ;
Bhanji, N ;
Bagshaw, CR ;
Letinic, K ;
Di Paolo, G ;
De Camilli, P ;
Roberts, GCK ;
Critchley, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (33) :31202-31209
[4]   Further characterization of the interaction between the cytoskeletal proteins talin and vinculin [J].
Bass, MD ;
Patel, B ;
Barsukov, IG ;
Fillingham, IJ ;
Mason, R ;
Smith, BJ ;
Bagshaw, CR ;
Critchley, DR .
BIOCHEMICAL JOURNAL, 2002, 362 :761-768
[5]   Molecular extensibility of mini-dystrophins and a dystrophin rod construct [J].
Bhasin, N ;
Law, R ;
Liao, G ;
Safer, D ;
Ellmer, J ;
Discher, BM ;
Sweeney, HL ;
Discher, DE .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 352 (04) :795-806
[6]   Structural dynamics of α-actinin-vinculin interactions [J].
Bois, PRJ ;
Borgon, RA ;
Vonrhein, C ;
Izard, T .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (14) :6112-6122
[7]   The vinculin binding sites of talin and α-actinin are sufficient to activate vinculin [J].
Bois, PRJ ;
O'Hara, BP ;
Nietlispach, D ;
Kirkpatrick, J ;
Izard, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (11) :7228-7236
[8]   Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles [J].
Borowsky, ML ;
Hynes, RO .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :429-442
[9]   The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation [J].
Calderwood, DA ;
Zent, R ;
Grant, R ;
Rees, DJG ;
Hynes, RO ;
Ginsberg, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (40) :28071-28074
[10]   Talin controls integrin activation [J].
Calderwood, DA .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2004, 32 :434-437