Efficient inverted solar cells using TiO2 nanotube arrays

被引:115
作者
Yu, Bang-Ying [1 ,2 ]
Tsai, Ating [3 ]
Tsai, Shu-Ping [1 ]
Wong, Ken-Tsung [2 ]
Yang, Yang [3 ]
Chu, Chih-Wei [1 ]
Shyue, Jing-Jong [1 ,4 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan
[2] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan
关键词
D O I
10.1088/0957-4484/19/25/255202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5 wt% NH(4)F and 1.0 wt% H(2)O with 20 V potential. The tube length (similar to 100 nm) was controlled by the thickness of the sputtered titanium layer on the indium-tin oxide (ITO) substrate. The diameter of the tube was approximately 15-25 nm. After annealing in air at 500 degrees C for 1 h, nanotubes arrays were crystallized to the anatase phase from the initial amorphous state. Following the infiltration of polymeric semiconductor (poly(3-hexylthiophene) and (6,6)-phenyl C(60) butyric acid methyl ester, P3HT:PCBM), the filled TiO(2) layer had an optical absorption over a range from UV to visible light. The high surface-to-volume ratio of the nanotube arrays structure increased the effective area of the active region. The high efficiency of our solar cell is attributed to the vertical TiO(2) nanotube array's enhanced conduction of photo-induced current due to its charge transport capability.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania [J].
Coakley, KM ;
McGehee, MD .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3380-3382
[2]  
DENNLER G, 2005, P IEEE, V8, P1432
[3]   New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J].
Kim, JY ;
Kim, SH ;
Lee, HH ;
Lee, K ;
Ma, WL ;
Gong, X ;
Heeger, AJ .
ADVANCED MATERIALS, 2006, 18 (05) :572-+
[4]   Efficient inverted polymer solar cells [J].
Li, G. ;
Chu, C. -W. ;
Shrotriya, V. ;
Huang, J. ;
Yang, Y. .
APPLIED PHYSICS LETTERS, 2006, 88 (25)
[5]   Brookite → rutile phase transformation of TiO2 studied with monodispersed particles [J].
Li, JG ;
Ishigaki, T .
ACTA MATERIALIA, 2004, 52 (17) :5143-5150
[6]   Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films [J].
Mor, GK ;
Varghese, OK ;
Paulose, M ;
Grimes, CA .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (08) :1291-1296
[7]   High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays [J].
Mor, Gopal K. ;
Shankar, Karthik ;
Paulose, Maggie ;
Varghese, Oomman K. ;
Grimes, Craig A. .
APPLIED PHYSICS LETTERS, 2007, 91 (15)
[8]   A review on highly ordered, vertically oriented TiO2 nanotube arrays:: Fabrication, material properties, and solar energy applications [J].
Mor, Gopal K. ;
Varghese, Oomman K. ;
Paulose, Maggie ;
Shankar, Karthik ;
Grimes, Craig A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (14) :2011-2075
[9]   Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J].
Ong, Keat G. ;
Varghese, Oomman K. ;
Mor, Gopal K. ;
Shankar, Karthik ;
Grimes, Craig A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (04) :250-257
[10]   Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells [J].
Paulose, Maggie ;
Shankar, Karthik ;
Varghese, Oomman K. ;
Mor, Gopal K. ;
Grimes, Craig A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (12) :2498-2503