A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem

被引:49
作者
Bucur, Dorin [1 ]
Giacomini, Alessandro [2 ]
机构
[1] Univ Savoie, CNRS, UMR 5127, Math Lab, F-73376 Le Bourget Du Lac, France
[2] Univ Brescia, Dipartimento Matemat, Fac Ingn, I-25133 Brescia, Italy
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; FABER-KRAHN INEQUALITY; LAPLACIAN; CALCULUS;
D O I
10.1007/s00205-010-0298-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The isoperimetric inequality for the first eigenvalue of the Laplace operator with Robin boundary conditions was recently proved by Daners in the context of Lipschitz sets. This paper introduces a new approach to the isoperimetric inequality, based on the theory of special functions of bounded variation (SBV). We extend the notion of the first eigenvalue lambda(1) for general domains with finite volume (possibly unbounded and with irregular boundary), and we prove that the balls are the unique minimizers of lambda(1) among domains with prescribed volume.
引用
收藏
页码:927 / 961
页数:35
相关论文
共 15 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]  
[Anonymous], 1988, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
[3]  
[Anonymous], 1998, Lecture Notes in Math.
[4]  
[Anonymous], 1985, SOBOLEV INEQUALITIES
[5]   The Laplacian with Robin boundary conditions on arbitrary domains [J].
Arendt, W ;
Warma, M .
POTENTIAL ANALYSIS, 2003, 19 (04) :341-363
[6]  
BOSSEL MH, 1986, CR ACAD SCI I-MATH, V302, P47
[7]  
BUCUR D, 2008, CALC VAR PA IN PRESS
[8]   A density result in SBV with respect to non-isotropic energies [J].
Cortesani, G ;
Toader, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (05) :585-604
[9]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[10]   A Faber-Krahn inequality for Robin problems in any space dimension [J].
Daners, D .
MATHEMATISCHE ANNALEN, 2006, 335 (04) :767-785